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Preface
Solid state theory is the description of matter and its macroscopic properties from a
quantum mechanical point of view. These notes give a short introduction on how to
approach the description of solids from quantum mechanics. They orient on a short
introductory lecture course and follow [Czy16, chapters 1-6.2] mostly.

Some parts of these notes were created, at the time I was learning the corresponding
concepts. So be aware, that there may not only be the usual typos, but possibly wrong
statements. In that sense, read with caution. However, nothing presented here is new,
and usually well covered in textbooks.
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1
Lattice structure

In the solid state, matter can have three structures. A crystalline structure, a poly crystalline
structure and a non-crystalline structure. In a crystal, the constituents, e.g. atoms, molecules
or groups of atoms and molecules, form a periodic structure, that spans the whole solid. A poly
crystal is composed of many crystals. As the name suggests, non-crystals have no periodicity.
Since most materials form crystals in the solid state, this chapter introduces the mathematical
concepts to describe crystals.

1.1 Bravais lattice

1.1.1 Definition of lattices

Although the physics is confined to dimensions less than three, it can be useful, to keep
the definitions general.

Definition 1.1.1.
An n-dimensional Bravais lattice is a point set L ⊂ En, that is a subset of the
n-dimensional Euclidean space En,1that is periodic. This means, that there are n
linearly independent vectors vj ∈ Rn, such that for any point σ ∈ L, it holds that

L :=
p ∈ En

∣∣∣∣∣∣ p = σ +
n∑
j=1

mjvj , mj ∈ Z

 .

Here we call the vectors {vj} primitive vectors. The linear combination over
Z are called lattice vectors

L := 〈v1, . . . ,vn〉Z :=
V ∈ Rn

∣∣∣∣∣∣ V =
n∑
j=1

mjvj , mj ∈ Z

 .

Remark 1.1.2.
If one fixes a single point σ ∈ L as the origin, the concept of affine spaces is not
needed, and one can reduce En to Rn. Then, the points p can be identified with

1Here, the affine space is meant. Put simply, points and vectors as translations are differentiated. In
fact, lattices can be defined on any affine space.
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the vectors p ≡ ∑n
j=1mjvj and thus:

L ≡ L :=
v ∈ Rn

∣∣∣∣∣∣ v =
n∑
j=1

mjvj , mj ∈ Z

 .

For that reason, L will denote the point set, as well as the lattice vectors.

The definition does not specify the choice of primitive vectors. Indeed, they are not

w1w2

v1

v2

Figure 1.1: Example of a 2-dimensional lattice, with the choice of two different sets of generating
vectors, with unit cells. Also primitive cells, that are not unit cells (green).

unique, and it requires conventions to fix them. This can be observed in figure 1.1. Yet,
because of the definition, the linear span over Z

〈v1, . . . ,vn〉Z

does not depend on the choice of primitive vectors, since (suggestive notation):

σ + 〈v1, . . . ,vn〉Z = σ + L = σ + 〈w1, . . . ,wn〉Z .

Definition 1.1.3.
A translation vector T of a Bravais lattice L is an element of the linear span
of a choice of (then any choice) primitive vectors vj:

T ∈ 〈v1, . . . ,vn〉Z .

Fixing a choice of primitive vectors, a translation is determined by the coefficients
mj ∈ Z, such that one writes:

T ~m =
n∑
j=1

mjvj .
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Remark 1.1.4 (Notation).
In these notes, vectors are highlighted by boldface T . However, to combine some
objects mj notationally, we write ~m = (m1, . . . ,mn) and ~m · ~̀= ∑

jmj`j etc.

1.1.2 Primitive and unit cells

The definition of translation, in the sense of lattices, allows to define primitive cells.2

Definition 1.1.5.
A primitive cell is a cell that satisfies the following conditions:
i) It contains only one point.
ii) It has minimal volume.
iii) Upon lattice translations, it fills the whole lattice volume (tiling).

An example of a primitive cell, that is not a unit cell, can be found in figure 1.1. Unit
cells are defined as follows:

Definition 1.1.6.
The parallelepiped spanned by the primitive vectors is called unit cell.

The volume of the unit cell is given by

V = det(v1, . . . ,vn) .

Another characteristic of a unit cell is the number of points, it contains. Again,
considering figure 1.1 shows, that not all unit cells are primitive. Considering the
primitive vectors {vi} one could think, that the unit cell contains either 4 or no point.
However, both is wrong, showing the need of a formal definition.

Definition 1.1.7.
A point p lies with a proportion of x in a unit cell C, if a for all ε > 0, the
proportion of the volume of the ε-ball Bε(p) around p, that lies in C is x:

Vol(C ∩Bε(p)) = x · Vol(Bε(p)) .

This definition is seems abstract at first, but becomes a matter of counting in dimensions
less than 3.

Example 1.1.8.
If the unit cell is a cuboid in 3 dimensions, the following holds:

point at corner: x = 1/8 ,

point at edge: x = 1/4 ,

point at surface: x = 1/2 ,

2Here, the naming convention is somewhat odd. As will be seen, the cells, created by primitive vectors
are nor called primitive cells, but unit cells. Primitive cells are defined by translational properties.
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point in the interior: x = 1 .
In case of a 2 dimensional rectangle, one starts from 1/4. Hence for {vj} in figure
1.1, there are 4× 1

4 = 1 points in the unit cell. Hence, it is also a primitive cell.

1.1.3 Wigner-Seitz cells and neighbors

Primitive cells are not unique, as has been demonstrated by figure 1.1. Only their
volume is unique, fixed by the density of the points in En. One approach, for a unique
definition, is to discretize the notion of ε-ball:

Definition 1.1.9.
Let d(·, ·) : En × En → R denote the Euclidean distance of two points in En.
Then, the Wigner-Seitz cell of a lattice point σ ∈ L is defined as follows:

C(σ) := {p ∈ En | d(p, σ) ≤ d(p, q) ∀ q ∈ L \ {σ}} .

It is worthwhile to reformulate the definition in terms of vector spaces. Fix the lattice
point σ ∈ L as origin and primitive vectors {vj}. In this conventional language, the
definition of the Wigner-Seit cell of a lattice point R~m ∈ Rn is given by:

C(R~m) := {r ∈ Rn | ‖r −R~m‖ ≤ ‖r −R~n‖ ∀ ~n 6= ~m ∈ Zn} .

Example 1.1.10 (Construction of Wigner-Seitz cells).

The Wigner-Seitz cell of σ ∈ L can be constructed as follows:

1. Connect the σ with neighboring points by straight lines.

2. Draw the orthogonal planes at half the length of the connecting lines.

3. The surface of the union of these planes, as viewed from the perspective of
σ, is the boundary of the Wigner-Seitz cell.

The meaning of “from the perspective of σ” is necessary, as only the innermost
planes are needed. Compare to figure 1.2.

The meaning of neighboring point is not precise enough. For that reason, one defines
the concept of nearest neighbor. The name already gives a definition, but we still define
it formally:

Definition 1.1.11.
Let p ∈ L be a lattice point. Another lattice point q is called nearest neighbor,
if

‖p− q‖ ≤ ‖p− r‖ ∀ r ∈ L .

There can be more then one nearest neighbor, hence the use of less then equal. The
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Figure 1.2: Construction of a Wigner-Seitz cell. The green lines do not contribute. They define the
second Wigner-Seitz cell
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Figure 1.3: The nearest neighbors q, second nearest neighbors r and third nearest neighbors s of p,
of different lattices

number of nearest neighbors is called coordination number. One defines the second
nearest neighbors, by removing the nearest neighbors, and finding the next nearest
neighbors. Repeating leads to the concept of n-th nearest neighbors.

1.1.4 Symmetry groups

Bravais lattices can be categorized by their symmetries. A symmetry is a space
transformation, that leaves the lattice invariant. There are three symmetries, that come
to mind:

Translation by a vector t ∈ Rn.

Rotation around a point σ ∈ L.

Space inversion at a point σ ∈ L w.r.t. an axis A.

One can formalize these intuitive transformations by considering groups and their
actions on En.
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The translation group T ∼= Rn acts on En by t◦p = p+t for all t ∈ T . The symmetry
subgroup of T for a lattice, denoted by L(T ) here, is by construction the linear span of
some primitive vectors over Z:

L(T ) = 〈v1, . . . ,vn〉Z .

Rotations and space inversions together form a group, called orthogonal group
O(n) := O(Rn). Fixing a point σ ∈ L, every other point p = σ + r of En can be
identified with the vector r ∈ Rn. Then, O(n) act on En, by R ◦ p = σ + Rr, where
the action of O(n) on Rn is understood. The symmetry group L(O(n)) is a subgroup
of O(n), that depends on the choice of lattice L.
To obtain a single group, that describes the symmetries of the lattice, one would

proceed by considering the semidirect product of the translation symmetry group L(T )
and L(O(n)).

1.1.5 Atomic basis

The number of Bravais lattices is finite. In fact, there are only 14 Bravais lattices
in three dimensions. However, there are much more crystalline structures in nature,
e.g. the diamond structure or the NaCl structure. In two dimensions, the honeycomb
structure is also no Bravais lattice. This means, that an additional concept apart from
Bravais lattices is needed.

Definition 1.1.12.
The atomic position vectors are a set of vectors {bj}kj=1, that specify the
positions qj of the k atoms, w.r.t. Bravais lattice positions p:

qj = p+ bj .

v1

v2 b2

Figure 1.4: Honeycomb lattice.

If the atomic position is only b1 = 0, one
obtains the original Bravais lattice. If
no position vector is 0, no point of the
Bravais lattice is in the crystalline struc-
ture. Choosing an origin σ, the lattice
for a crystalline structure is modeled by
the primitive vectors {vj} and the atomic
position vectors {bk}.

An example for a crystalline structure in
two dimensions, that is no Bravais lattice,
is the Honeycomb lattice (see figure 1.4).
It is defined by the primitive vectors

v1 = a

(
1
0

)
and v2 = a

(
cos(2π

3 )
sin(2π

3 )

)
,

where a is the lattice constant, and the
position vectors:

b1 =
(

0
0

)
and b2 = a

√
3

3

(
cos(π3 )
sin(π3 )

)
.
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The symmetry considerations of subsection 1.1.4 also apply to crystalline structures,
providing a tool for further classification.

1.2 The reciprocal lattice and periodic functions

Let L be a Bravais lattice and {vj} the primitive lattice vectors. Let f : En → C be a
function with the same periodicity as the lattice:

f(r +R~m) = f(r) ∀ r ∈ En ,R~m ∈ 〈v1, . . . ,vn〉Z .

Fix an origin σ, such that En can be identified with Rn and choose the basis { vj
‖vj‖}:

r = σ +
n∑
j=1

rj
vj
‖vj‖

.

There is a function f : Rn → C, that is the coordinate representation of f :

f(r1, . . . , rn) = f(r) = f(σ + rj
vj
‖vj‖) .

This coordinate representation, has the periodicity ‖vj‖ in the j-th component:

f(r1 . . . , rj + ‖vj‖, . . . , vn) = f(r1 . . . , rj, . . . , vn) .

Then, the Fourier transformation is well defined:

f(r) =
∑

2πi~̀∈Zn
f̃~̀ exp

2πi
n∑
j=1

`j
rj
‖vj‖

 .

with

f̃~̀ = 1
‖v1‖

∫ ‖v1‖

0
. . .

1
‖vn‖

∫ ‖vn‖
0

f(r1, . . . , rn) exp
2πi

n∑
j=1

`j
rj
‖vj‖

 dr1 . . . drn .

Next, we observe, that the term in the exponential can be written as:

2πi
n∑
j=1

`j
rj
‖vj‖

= i

〈∑
j

`jgj ,
∑
j

rj
‖vj‖

vj

〉
iff 〈gi,vj〉 = 2πδij .

This leads to the following definition:

Definition 1.2.1.
Let L be a lattice with primitive vectors {vj}. The reciprocal lattice (for σ)
is defined by

L̃ := 〈g1, . . . , gn〉Z
where gj ∈ Rn are defined by:

〈gi,vj〉 = 2πδij .

The name lattice is somewhat misleading, as the lattice is not a lattice in real space,
as the points depend on the choice of origin σ. In fact, for every Bravais lattice point
p ∈ L, one defines a separate reciprocal lattice. Similar to the concept of vector bundles.
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Theorem 1.2.2 (Reciprocal lattice, alternative definition).
For the reciprocal lattice, it holds that:

L̃ = {G ∈ Rn | 〈G,R〉 ∈ 2πZ ∀ R ∈ L} .

Proof 1.2.3.

“⊂”:
Choosing primitive vectors {vj} of L, the lattice vector R can be written as
R = ∑n

i=1mivi, thus:

〈G,R〉 =
〈∑

j

`jgj ,
∑
i

mivi

〉
=
∑
i,j

`jmi〈gj,vi〉

= 2π
∑
i,j

`jmiδij = 2π
∑
j

`jmj ∈ 2πZ .

“⊃”:
Let G be as assumed. Since {gi} are a basis, there are xi ∈ R, such that
G = ∑

i xigi. It remains to show, that xi ∈ Z. By assumption, 〈G,R〉 ∈ 2πZ
for all R ∈ L, especially for R = vj. But then:

2πZ 3 〈G,vj〉 =
∑
i

xi〈gi,vj〉 = 2π
∑
i

xiδij = 2πxj .

Corollary 1.2.4.
The reciprocal lattice for a point σ ∈ L does not depend on the choice of primitive
vectors.

Remark 1.2.5.
In three dimensions, there is a standard construction for the reciprocal basis
vectors:

gi = εijk
vj × vk

| det(v1,v2,v3)| .

It still remains, to check that the Fourier series for f still satisfies the periodicity
conditions. Using the definition of the reciprocal lattice, we can write:

f(r) =
∑
~̀∈Zn

f̃~̀ exp
i〈G~̀ ,

∑
j

rj
‖vj‖

vj

〉 .

⇒ f(r +R) =
∑
~̀∈Zn

f̃~̀ exp
i〈G~̀ , R+

∑
j

rj
‖vj‖

vj

〉
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=
∑
~̀∈Zn

f̃~̀ exp
i〈G~̀ ,

∑
j

rj
‖vj‖

vj

〉 ei〈G~̀ , R〉
= f(r) ,

since 〈G~̀,R〉 = 2πN with N ∈ Z and e2πN = 1.

Definition 1.2.6.
The (first) Brillouin zone is the Wigner-Seiz cell of p = 0 ∈ L̃, where L̃ is the
reciprocal lattice.

Remark 1.2.7 (On the proper notion of momentum).

The Fourier transformation is associated with momentum in quantum mechanics.
However, since force is a 1-form (dual vector), so is momentum. Hence, the natural
Fourier transformation uses the dual vector space (not needing a scalar product).
Then, gi ∈ (Rn)∗ are the dual basis of vj, up to a factor 2π:

gi(vj) = 2πδij .

In fact, if vectors have dimension length, dual vectors have the dimension 1
length ,

which is in accordance to the standard construction form remark 1.2.5.



2
Separation of lattice and electron
dynamics
Describing solids as quantum systems, one is interested in the Hamiltonian. Neglecting relativistic
effects, the Hamiltonian is well known and fairly simple to be written down. However, because
of the huge number of particles, not only analytical solutions, but also numerical solutions are
impossible. For that reason, perturbative methods are necessary.

2.1 General solid state Hamiltonian

A solid consists of ions (atoms with bounded electrons) with relatively fixed positions
and “free” valence electrons. There are Na ions, with individual mass Mj and charge
Zje. The Ne valance electrons each have the electron mass me and charge −e. From
charge conservation it follows that:

0 = Ne · (−e) +
Na∑
j=1

Zj · e ⇒ Ne =
Na∑
j=1

Zj

The goal of this section is to find the Hamiltonian H for the stationary Schrödinger
equation

Hψ(~R, ~r) = Eψ(~R, ~r) .

The wave function depends on the positions of the ions ~R = {R1, . . . ,RNa} and on the
positions of the valence electrons ~r = {r1, . . . , rNe}.

Notation 2.1.1.
The µ-th component of rj is denoted by rµj . The same holds for Rµ

j .

Remark 2.1.2.
It is common practice, to choose an origin and coordinates, when considering wave
functions. Hence Bravais lattice points and Bravais vectors can be identified from
here on.

Kinetic energy

With the separation of lattice and electron dynamics in mind, we split the kinetic
energy:

T = Ta + Te
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where

Ta =
Na∑
j=1

P 2
j

2Mj

=
Na∑
j=1

−~2

2Mj

∆Rj and Te = −~
2

2me

Ne∑
j=1

∆rj .

Here, the Laplace operator ∆rj acts on rj and ∆Rj acts on Rj.

Potential energy

The potential energy can be split in three parts, the interaction of the ions with other
ions Vaa, the interaction of the valence electrons with other electrons Vee and the cross
interaction Vea:

V = Vaa + Vaa + Vea .

The ion-ion interaction Vaa, electron-electron interaction Vee and ion-electron interaction
Vea are:

Vaa =
∑
j<k

ZjZke
2

‖Rj −Rk‖
, Vee =

∑
j<k

e2

‖rj − rk‖
, Vea = −

∑
j,k

Zje
2

‖rj −Rk‖
.

The full Hamiltonian

Neglecting relativistic effects, the full solid Hamiltonian is

H = Ta + Te + Vaa + Vee + Vea .

To separate the electron dynamics from the lattice dynamics, the Hamiltonian is
rewritten in atomic units:

Bohr radius: Consider dimensionless length r̃j, R̃j = rj
a0
, Rj
a0
, where a0 = ~2

mee2
is the

Bohr radius.

Energy: Consider dimensionless energies H̃ = H
E0
, Ẽ = E

E0
, where E0 = e2

a0
= mee4

~2 .

Choosing a new length scale is a coordinate change. The partial derivatives transform
as follows:

∂

∂rµj
= 1
a0

∂

∂r̃µj
and ∂

∂Rµ
j

= 1
a0

∂

∂R̃µ
j

⇒ ∆rj = 1
a2

0
∆r̃j

and ∆Rj = 1
a2

0
∆
R̃j

.

Plugging all in, leads to:

Ṽaa =
∑
j<k

ZjZk

‖R̃j − R̃k‖
, Ṽea = −

∑
j,k

Zj

‖R̃j − r̃k‖
, Ṽee =

∑
j<k

1
‖r̃j − r̃k‖

T̃e = −1
2

Ne∑
j=1

∆r̃j
and T̃a = −1

2

Na∑
j=1

me

Mj

∆
R̃j

. (2.1)
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Hence the solid Hamiltonian in atomic units reads:

H̃ = 1
2

Ne∑
j=1
−∆r̃j

+
∑
j<k

1
‖r̃j − r̃k‖︸ ︷︷ ︸

electrons

+ 1
2

Na∑
j=1

me

Mj

(−∆
R̃j

) +
∑
j<k

ZjZk

‖R̃j − R̃k‖︸ ︷︷ ︸
ions

+
∑
j,k

Zj

‖R̃j − r̃k‖︸ ︷︷ ︸
interaction

.

In the following, we will drop the tilde notation, as we will stay in atomic units.

2.2 Born-Oppenheimer approximation

To decouple the electrons from the lattice, we observe the coefficient me
Mj

for the kinetic
energy of the ions in (2.1). Even for the hydrogen atom, it is of magnitude ≈ 10−3.
This suggests to treat the kinetic energy of the ions as perturbation, defining H0 by:

H = H0 + Ta ,

H0 = Te + Vee + Vaa + Vea .

The stationary Schrödinger equation for H0 does not involve partial derivatives of ~R,
as Ta is excluded. This means, that H0 describes the solid, with fixed ion positions.
Assume now, the stationary Schrödinger equation has been solved for H0:

H0φα(~r, ~R) = Eα(~R)φα(~r, ~R) .

Here, α is a shorthand notation for the quantum numbers of the electrons. Note that
the ion positions ~R are parameters in this equation. For each ion configuration ~R, the
wave functions {φα} are assumed to be a Hilber basis, such that:

ψ(~r, ~R) =
∑
α

χα(~R)φα(~r, ~R) .

Plugging in, into the full equation leads to:

(H − E)ψ(~r, ~R) = (H0 + Ta − E)
∑
α

χα(~R)φα(~r, ~R)

=
∑
α

χα(~R)H0φα(~r, ~R) + Ta
(
χα(~R)φα(~r, ~R)

)
− Eχα(R)φα(~r, ~R)

=
∑
α

(Eα(~R)− E)χα(~R)φα(~r, ~R) + Ta
(
χα(~R)φα(~r, ~R)

)
= 0 .

Plugging Ta from (2.1) in, it follows that:

Taχα(~R)φα(~r, ~R) = [Taχα(~R)]φα(~r, ~R) + χα(~R)Taφα(~r, ~R)
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−
Na∑
j=1

n∑
k=1

me

Mj

(
∂

∂Rµ
j

χα(~R)
)(

∂

∂Rµ
j

φα(~r, ~R)
)

=: [Taχα(~R)]φα(~r, ~R) +Bα(~r, ~R) .

Hence:

0 =
∑
α

(
Eα(~R)χα(~R) + Taχα(~R)− Eχα(~R)

)
φα(~r, ~R) +Bα(~r, ~R) . (2.2)

Since {φα} are a Hilbert basis (~R is a parameter), it holds that∫
d~r φβ(~r, ~R)φα(~r, ~R) = δαβ ,

where d~r is a shorthand notation for dr11 dr12 . . . drNen. Thus, acting with the integration
operator

∫
d~r φβ(~r, ~R) on both sides of (2.2) leads to1

0 =
(
Eβ(~R)χβ(~R) + Taχβ(~R)− Eχβ(~R)

)
+
∑
α

Aαβ(~R) ,

where Aαβ(~R) =
∫
d~r φβ(~r, ~R)Bα(~r, ~R).

Definition 2.2.1.
The Born-Oppenheimer approximation is to neglect the terms Aαβ(~R). One
obtains a sort of Schrödinger equation(

Ta + Eβ(~R)
)
χβ(~R) = Eχβ(~R)

for χβ(~R) with effective potential Eβ(~R).

Remark 2.2.2 (Summary).

1. Obtain Eα(~R) by solving

H0φα(~r, ~R) = Eα(~R)φα(~r, ~R) .

2. Find the development coefficients χα(~R) by solving(
Ta + Eβ(~R)

)
χα(~R) +

∑
γ

Aγα(~R) = Eχα(~R)

or neglect ∑γ Aγα(~R) for the Born-Oppenheimer approximation.

3. The wave function for the full equation Hψ = Eψ is given by:

ψ(~r, ~R) =
∑
α

χα(~R)φα(~r, ~R) .

1
(
Eα(~R)χα(~R) + Taχα(~R)− Eχα(~R)

)
does not depend on ~r.



3
Lattice vibrations
In this chapter, an approximation by harmonic oscillators and the translational symmetries of the
solid are used, to find a solution for Schrödinger equations that describe the ions in a solid. This
leads to the definition of phonons, quasi particles that correspond to lattice vibrations that are
quantized, because of the finite size of real solids.

3.1 Harmonic approximation

We consider the Schrödinger equation for the ions

Hψ(~R) = Eψ(~R) .

Note, that for Mj = me
~2M̃j

and V (~R) = Eα(~R) one obtains the equation of the Born-
Oppenheimer approximation from the generic Hamiltonian. The general problem of the
large number of particles remains, such that one needs further approximations.
Start with the classical Hamilton function

H(~P , ~R) =
Na∑
j=1

P 2
j

2Mj

+ V (~R) .

Assume, that the potential V has a global minimum in ~R, that is also a local minimum.
This means that

∂

∂Rµ
j

V (~R)
∣∣∣∣∣
~R=~R

= 0 .

Hence the Taylor expansion of lowest non-trivial order (harmonic approximation)
reads (uj = Rj −Rj):

V (~R) ≈ V ( ~R) + 1
2
∑
j,µ;`,ν

Φµν
j` u

µ
j u

ν
` ,

where Φµν
j` are the components of the Hessian matrix:

Φµν
j` = ∂2

∂Rµ
j ∂R

ν
`

V (~R)
∣∣∣∣∣
~R=~R

.

By the freedom of potential energy, we can choose the classical zero point energy to be

V ( ~R) = 0 ⇒ V (~R) = 1
2
∑
j,µ;`,ν

Φµν
j` u

µ
j u

ν
` .
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Definition 3.1.1.
The dynamical matrix Dµν

j` is defined by

Dµν
j` := 1√

MjM`

Φµν
j` ,

where Mj is the mass of the j-th ion.

By the condition, that ~R is a local minimum, it follows, that Φµν
j` and hence Dµν

j` are
positive definite n ·Ne × n ·Ne matrices. The reason, to define the dynamical matrix,
is that the Hamilton function in harmonic approximation can be written as

H(~P , ~v) = 1
2
~P
′T
1~P

′
+ 1

2~u
′TD~u′ ,

where the tuples ~P
′
and ~u′ are defined as follows:

~P ′ = ( 1√
M1
P 1

1 ,
1√
M1
P 2

1 . . . ,
1√
MNa

P n
Na) ,

~u′ = (
√
M1u

1
1,
√
M1u

2
1, . . . ,

√
MNau

n
Na) .

It is useful, to change the index conventions for the rest of this section, using only one
index j, running form 1 to n ·Na.
For real, C3(Rn·Ne) potentials, the dynamical matrix is real and symmetric because

of the symmetry of partial derivatives. Then, by the principal axis theorem, there is an
orthogonal matrix C, i.e. CT = C−1, such that

CDCT = Ω with Ω = diag(ω2
1, . . . , ω

2
n·Ne) .

Defining ~p = C ~P ′ and ~u = C~u′, we observe that:

H(~P , ~u) = 1
2
~P ′T1~P ′ + 1

2~u
′TD~u′

= 1
2
~P ′TCTC ~P ′ + 1

2~u
′TCTCDCTC~u′

= 1
2~p

T
1~p + 1

2~u
TΩ~u = H(~p,~u) (3.1)

Passing to quantum mechanics (but keeping the linear indexing j for the tuples ~P
and ~v), it holds that1

[vj, v`] = 0 = [Pj, P`] and [vj, P`] = i~δj`

We calculate:

[uj, p`] =
∑

α

Cjα
√
Mαvα,

∑
β

C`β
1√
Mβ
Pβ


=
∑
αβ

CjαC`β

√
Mα

Mβ

[vα, Pβ]︸ ︷︷ ︸
=i~δαβ

1In fact, one needs to use the commutator relations for Pj and Rj . But since vj = Rj −Rj and the
commutator is bilinear, the relations carry over to vj .



16 Chapter 3 Lattice vibrations

= i~
∑
α

CjαC`α = i~
∑
α

CjαC
T
α`

= i~(1)j` = i~δj` .

The commutators [uj, u`] = 0 = [pj, p`] can be calculated as before. Writing (3.1) in
coordinates:

H(~p,~u) = 1
2

n·Na∑
j=1

p2
j + ω2

ju
2
j =

∑
j

Hj ,

we observe, that Hjµ is a harmonic oscillator with mass m = 1. Since uj and pj satisfy
the canonical commutation relations, the standard approach for the harmonic oscillator
can be applied here:

bj =
√
ωj
2~uj + i

√
1

2~ωj
pj .

⇒ Hj = ~ωj(b†jbj + 1
2) ⇒ H =

n·Na∑
j=1

~ωj(b†jbj + 1
2) . (3.2)

Remark 3.1.2.
The operators b†j, bj are bosonic creation/annihilation operators, satisfying the
canonical commutation relations:

[bj, b`] = 0 = [b†j, b
†
`] and [bj, b†`] = δj` .

In fact, we have obtained the second quantized Hamiltonian, by the means of
canonical quantiziation.

3.2 Periodic boundary conditions

Here, we deviate from [Czy16] and use the Bloch theorem to characterize the eigen
vectors /states of the ion Hamiltonian, as in [Pru13].

3.2.1 Translation operator

So far, we have made no restrictions for the equilibrium positions ~R. However, since
we want to describe solids that have a crystalline structure, the equilibrium positions of
the ions form a crystal. The positions of the ions in the excited state are ~R = ~R + ~u,
i.e. oscillations around the equilibrium positions.

To use translational invariance, we need to extend the structure throughout the whole
space, setting Na →∞. Adopting for the crystalline structure, we change the notation
again: We write:

Rµ
~j,α

= Rµ
~j

+ bµα ,

where µ describes the coordinate, R~j is a Bravais lattice vector and bα an atom position
in the unit cell. This choice is possible, as no other restriction, that conflicts with
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this choice, has been made before We recall, that adding a Bravais vector B ∈ L to a
Bravais lattice point R~j, one obtains another lattice point:

R~j +B = R~k .

Since we have (implicitly) chosen an origin for the Bravais lattice, lattice points and
Bravais vectors can be identified. Thus, there is an ~j′, such that B = R~j′ , which leads
to the following notation:

R~j + R~j′ = R~k ≡R~j+~j′ . (3.3)

Definition 3.2.1.
We define the translation operator T~j for a Bravasi vector R~j by

T~jf(r) = f(r + R~j) .

With 3.3, we observe that the notation T~j+~̀ is well defined, and calculate:

T~jT~̀f(r) = f(r + R~j + R~̀) = f(r + R~j+~̀) = T~j+~̀f(r) ,

⇒ T~j ◦ T~̀ = T~j+~̀ .

3.2.2 Bloch’s theorem

Let A be an operator that commutes with any translation operator T~j, i.e. [A, T~j].
Then there are common eigen states, i.e.

Aψ(r) = aψ(r) and T~jψ(r) = c(R~j)ψ(r) .

For the eigen values c(R~j), the following holds:

c(R~j)c(R~̀)ψ(r) = T~jT~̀ψ(r) = T~j+~̀ψ(r) = c(R~j+~̀)ψ(r) ,

⇒ c(R~j)c(R~̀) = c(R~j+~̀) .

As usual in quantum mechanics, we normalize the sates as follows:

1 =
∫
drn |ψ(r)|2 =

∫
drn |ψ(r + R~j)|2 = |c(R~j)|2

∫
drn |ψ(r)|2

= |c(R~j)|2

This leads to the conclusion

c(R~j) = ei〈k,R~j〉 with k ∈ Rn .

Because ei〈G, R~j〉 = 1 for all reciprocal lattice vectors G ∈ L̃, one can reduce k to a
primitive cell in the reciprocal lattice, e.g. the unit cell or the Brillouin zone. Because
of this, k becomes interpreted as momentum.
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It should be noted, that k is not uniquely determined. It is rather a parameter, that
distinguishes the ψ further, like a quantum number. Putting all together, one obtains
the Bloch condition

ψk(r + R~j) = ei〈k,R~j〉ψk(r) . (3.4)

The ψk can be written in terms of periodic functions uk, i.e. uk(r) = uk(r + R~j) for
all R~j, called Bloch functions:

ψk(r) = ei〈k,r〉uk(r) . (3.5)

3.2.3 Periodic boundary conditions

To use translational invariance, we had to set Na → ∞. However, real solids have
finite size. To keep both, the finite nature of real solids as well as the computational
convenience of Bravais lattices, the finite lattice is repeated periodically, with respective
boundary conditions. The construction of a finite crystal from the infinite model is

v1

v2

N2 = 3

N1 = 5
(a) (b)

Figure 3.1: Example of finite lattice 3.1a and its periodic continuation 3.1b.

straightforward. Consider the Bravais lattice L = {∑n
j=1 vjmj | mj ∈ Z} that describes

the solid. Then repeat the unit cell Nj times in the direction vj. One obtains a finite
lattice L. This lattice has ∏n

j=1Nj unit cells. If there are d atoms per unit cell, the
number of ions Na is given by

Na = d ·
n∏
j=1

Nj

One recovers the Bravais lattice by repeating the finite lattice. For functions of lattice
points f(R~m), this leads to periodic boundary conditions:

f(R~m +Njvj) = f(R~m) ∀ j = 1, . . . n .

Since Njvj ∈ L, the periodic boundary conditions have the following consequences for
Bloch functions ψk:

ψk(r +Njvj) = ei〈k, Njvj〉ψk(r) != ψk(r) ,

⇒ ei〈k,Njvj〉 = 1 ⇒ Nj〈k,vj〉 ∈ 2πZ .

This has the following important implications:
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• The momentum ~k has become discrete.

• The momentum can be written as k = ∑
j kjgj with reciprocal primitive vectors

gj ∈ L̃. As we have seen, the momenta can be reduced to a primitive cell. We
chose the unit cell and the Birllouin cell here, because the restriction for the kj
becomes easy in these cases:

uni cell: kj ∈ [0, 1) B.z.: kj ∈ [−1
2 ,

1
2) ∀ j .

Combining these observations by plugging in, we find:

2πZ 3 Nj〈k,vj〉 = Nj

∑
`

k`〈g`,vj〉 = 2πNjkj

⇒ kj = m

Nj

for m < Nj ∈ N0 .

For a finite lattice of lengths N1, . . . , Nj, the possible momenta are given by

k~m =
n∑
j=1

mj

Nj

gj (3.6)

unit cell: mj = 0, 1, . . . , Nj − 1 B.z.: mj = −Nj

2 ,−Nj

2 + 1, . . . , Nj

2 − 1 .

3.2.4 Diagonalization of the dynamical matrix

To obtain (3.2), we have used, that the dynamical matrix is diagonizable. However,
existence of a diagonalization does not give an algorithm. In fact, without further
considerations, diagonalizing an n ·Na × n ·Na matrix is impossible for contemporary
computers. Yet, translational invariance can be used to reduce the problem to the
diagonalization of an d · n× d · n-matrix, where d is the number of atoms in the unit
cell.
Applying the notation of subsection 3.2.1, the dynamical matrix reads:

Dµν
~j,α;~̀,β = 1√

MαMβ

∂2

∂Rµ
~j,α
∂Rν

~̀,β

V (~R)
∣∣∣∣∣∣
~R=~R

.

There are two things to observe here. The first is, that the masses only depend on the
atom index, because of the periodicity of the lattice. The second is, that the dynamical
matrix coefficient Dµν

~j,α;~̀,β depends on the indices ~j ∈ Zn and ~̀ ∈ Zn, which correspond
to Bravais vectors R~j and R~̀:

Dµν
~j,α;~̀,β = Dµν

α;β(~j, ~̀)
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Remark 3.2.2.
Because of the correspondence ~j ↔ R~j, it is common practice to write:

Dµν
α;β(~j, ~̀) = Dµν

α;β(R~j,R~̀) .

This is similar to the vector space isomorphism V → Rn defined by ∑i aivi →
(a1, . . . , an). In fact, it is a modul isomorphism I : L→ Zn. Formally we actually
have

Dµν
α;β(R~j,R~̀) =

(
Dµν
α;β ◦ I

)
(R~j,R~̀) .

This notation should be used with care, as the position dependence of the dynamical
matrix is

Dµν
~j,α;~̀,β( ~R)

The translational invariance of the Bravais lattice means, that translating every point
by an Bravais vector, the lattice still looks the same. For the dynamical matrix, this
means:

Dµν
α;β(~j, ~̀) = Dµν

α;β(~j + ~a, ~̀+ ~a) ∀ ~a ∈ Zn .

Choosing ~a = −~̀, we see that Dµν
α;β(~j, ~̀) depends only on the difference:

Dµν
α;β(~j, ~̀) = Dµν

α;β(~j − ~̀, 0) ≡ Dµν
α;β(~j − ~̀) .

We obtain the following n · d× n · d matrix, for ~m = ~j − ~̀:

D(~m) =



D11
1;1(~m) D12

1;1(~m) . . . D1d
1;n(~m)

D21
1;1(~m) D22

1;1(~m) . . . D1;d
2n (~m)

... . . . ...
Dd1
n;1(~m) Dd2

n;1(~m) . . . Ddd
n;n(~m)


To diagonalize the matrix (Dµν

~j,α;~̀,β), we have to solve the following eigen value
equation:

λaµ~j,α =
∑
~̀,β,ν

Dµν
α;β(~j − ~̀)aν~̀,β .

Following [Pru13] we make the ansatz (using the correspondence of remark 3.2.2):

aµ~j,α = ψµ(bα + R~j) = T~jψ
µ(bα) .

Since the dynamical matrix is a derived quantity from the potential V , it commutes
with the translation operators T~j, because of T~jV (~R) = V (~R + Rj) = V (~R). The,
eigen states of D(~m) thus can be chosen to be also eigen states of T~j. By Bloch’s
theorem we obtain:

aµ~j,α = ei〈k, R~j〉ψµk(bα) ≡ ei〈k, R~j〉ψµα,k .

Plugging in, into the eigen value equation, writing the eigen values in the form λ = ω2

and using the quantum number k, it follows that:

⇔ ω2ψµα,k =
∑
β,ν

ψνβ,k
∑
~̀

Dµν
α;β(~j − ~̀)e−i〈k, R~j−R~̀〉
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=
∑
β,ν

ψνβ,k
∑
~m

Dµν
α;β(~m)e−i〈k,R~m〉 . (3.7)

In the second line, we have used, that there is an ~m ∈ Zn, such that R~j −R~̀ = R~m.
Also, because the sum over ~̀ covers all indices Zn, we could also sum over ~m. The term∑

~m

Dµν
α;β(~m)e−i〈k,R~m〉

is a discrete inverse Fourier series:

D̃µν
α;β(k) =

∑
~m

Dµν
α;β(R~m)e−i〈k,R~m〉 .

This further motivates the interpretation of k as momentum. The components D̃µν
α;β(k)

define a matrix D̃(k). Plugging in, into (3.7):

ω2(k)ψµα,k =
∑
β,ν

D̃µν
α;β(k)ψνβ,k

This is again an eigen value equation. However, it is now an eigen value equation of a
n · d× n · d matrix for each k.

3.2.5 Ion Hamiltonian

Using the notation and results of this section, the ion Hamiltonian (3.2) becomes:

H =
∑
k

n·d∑
j=1

~ωj(k)(b†j,kbj,k + 1
2) . (3.8)

The k are momenta, wave vectors to be precise, that are given by (3.6), if one chooses
the unit cell as confinement. Here, the index j does not label the Bravais index, but
the dimension and the atom in the unit cell.

3.3 Phonons

Usually in second quantization, the creation and annihilation operators create/annihilate
particles. Here one adopts that picture, imagining quasi particles:

Definition 3.3.1.
The quasi particles created/annihilated by b†j,k/bj,k are called phonons.

Owing to the commutation relations, the phonons are bosons. For each atom and each
dimension, there is one phonon, labeled by the index j. Phonons, as created by b†j,k, also
carry a momentum k. However, one should be careful with this imagery, as phonons
are no real particles. There is no conservation of particles for example. Hence the word
quasi particle. It is best to think of phonons as vibration exitations of the atoms in the
solid.
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3.3.1 Phonon branches

The Hamiltonian (3.8) shows that for each phonon, there is a dispersion relation
ωj(k), i.e. a relation between the wave vector k and the angular frequency ω.

Definition 3.3.2.
A dispersion relation ωj(k) for a phonon is called phonon branch. A phonon
branch that satisfies

ωj(k) −→ 0 k −→ 0
is called acoustic branch. A phonon branch that satisfies

ωj(k) −→ ωj 6= 0 k −→ 0

is called optical branch.

It can be shown2, that for each dimension, there is an acoustic branch. So there are in

kπ
a

−π
a

ω(k)

Figure 3.2: Example for phonon branches in a two-atomic linear chain with momenta restricted to
the Brillouin zone. See [Dem10, section 12.1] for further information.

total n acoustic branches and n · d− n optical branches. Furthermore, it can be shown,
that for acoustic branches, it holds that

ωac(k) ∼ ‖k‖ for ‖k‖ → 0 .

3.3.2 Thermodynamics of phonons

To describe macroscopic, thermodynamical effects caused by lattice vibrations, such as
the specific heat for example, the phonon description has to be brought in the language

2See for example [Czy16, pp. 52ff.]. The basic idea is, that all atoms are displaced in the same
direction, but with possible different phases for different unit cells. Developing the classical equations
of motions for small k, one finds ω2(k)→ 0 for k→ 0 in these cases. But there are only n linearly
independent directions in n dimensions.
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of statistical mechanics. From second quantization we know, that the eigen states of
(3.8) are the occupation number states

|{nj,k}〉 := |n1,k1 , n1,k2 . . . , n2,k1 , . . .〉

with the eigen values

E{nj,k} =
∑
k

n·d∑
j=1

~ωj(k)(nj,k + 1
2) .

The set {nj,k} completely describes the quantum system and thus is a micro state in
the sense of statistical mechanics. Thus, the description of phonons becomes a problem
of statistical mechanics.

Internal energy

The internal energy is the expectation value of the E{nj,k}, i.e. U = 〈E{nj,k}〉. Phonons
are non-interacting bosons. A result from statistical mechanics is the so called Bose-
Einstein statistics:

〈nj,k〉 = 1
exp

(
~ωj(k)
kBT

)
− 1

,

where kB is the Boltzmann constant and T the temperature. For the internal energy

E0

〈n〉

Figure 3.3: Energy dependence of the particle number expectation value for the Bose-Einstein
statistics.

we calculate:

U = 〈E{nj,k}〉 =
∑
k

n·d∑
j=1

~ωj(k)(〈nj,k〉+ 1
2)

= 1
2
∑
k

n·d∑
j=1

~ωj(k) +
∑
k

n·d∑
j=1

~ωj(k)
exp

(
~ωj(k)
kBT

)
− 1

≡ E0 +
∑
k

n·d∑
j=1

~ωj(k)
exp

(
~ωj(k)
kBT

)
− 1
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Remark 3.3.3.
Here the quasi particle nature of phonons becomes noticeable. For acoustic
phonons, the expectation value of zero momentum phonons becomes infinite, i.e.
the Bose-Einstein function has a singularity. The particle number is no good
description for phonons, at least for zero momentum acoustical phonons. Yet
in case of the internal energy, these problems do not appear. Using l’hospital’s
theorem, one can see that

x

ex − 1 → 1 for x↘ 0 .

High temperature limit

In the high temperature limit, it holds that ~ωj(k)� kBT , for all (j,k). This allows to
consider only the first order contribution around 0 in ~ωj(k)

kBT
of the exponential function

exp
(
~ωj(k)
kBT

)
:

exp
(
~ωj(k)
kBT

)
≈ 1 + ~ωj(k)

kBT
.

For the internal energy it follows that:

U ≈ E0 +
∑
k

n·d∑
j=1

~ωj(k)
1 + ~ωj(k)

kBT
− 1

= E0 + kBT
∑
k

n·d∑
j=1

1

= E0 + kBT ·
n∏
j=1

Nj · n · d .

The product N ≡ ∏n
j=1Nj is the number of unit cells. In the limiting case T →∞, the

internal energy approaches asymptotically:

U ' N n d kB T .

This equation is called Dulong-Petit law.

Low temperature limit

Because of the acoustic branches, the assumption kBT � ~ωj(k) is wrong, as ω(k)→ 0
for k→ 0. For that reason, we have to treat the optical and acoustic phonons separately.
Assume, that kBT � ~ωjo(k), where j0 labels the optical phonons. Then

~ωj(k)
kBT

� 1 ⇒ exp
(
~ωj(k)
kBT

)
− 1 ≈ exp

(
~ωj(k)
kBT

)
.

This shows, that the contribution of the optical phonons can be neglected, because:

∑
k,jo

~ωj0(k)
exp

(
~ωjo (k)
kBT

)
− 1
≈
∑
k,jo

~ωj0(k) exp
(
−~ωjo(k)

kBT

)
,

which tends to zero for T → 0.



3.3 Phonons 25

For the analysis of the acoustic phonons, we assume, that the temperature is low
enough, such that only low momentum phonons are thermally excited. This allows to
use the dispersion relation ωja(k) = cja‖k‖:

U − E0 =
∑
k,ja

~cja‖k‖
exp

(
~cja‖k‖
kBT

)
− 1

.

To evaluate the sum, it is approximated by integration, a standard approach in statistical
physics.

Remark 3.3.4 (Integral approximation).
For the integral approximation we recall the definition of the Riemann integral:

b∫
a

f(x) dx '
∆x→0

∆x
b−a
∆x∑
k=0

f(xk) .

In case of a one dimensional lattice, this leads to the approximation:
∑
k∈pc

f(k) ≈ 1
∆k

∫
pc
f(k) dk ,

where pc is the primitive cell to which the momenta k are confined. From (3.6),
we find, that ∆k = 2π

Na
, where 2π

a
= ‖g‖. With the lattice length L = Na, this

leads to the one dimensional approximation

∑
k∈pc

f(k) ≈ L

2π

∫
pc
f(k) dk .

In n dimensions, with V = NVpc it follows that:

∑
k∈pc

f(k) ≈ V

(2π)n
∫

pc
f(k) dkn .

With the integral approximation we obtain:

U − E0 ≈
V

(2π)n
∑
ja

∫ ~cja‖k‖
exp

(
~cja‖k‖
kBT

)
− 1

dkn

= V

(2π)n
∑
ja

(
kBT

~cja

)n
kBT

∫ ‖x‖
e‖x‖ − 1 dxn

≈ V

(2π)n
∑
ja

(
kBT

~cja

)3

kBT
∫
Rn

‖x‖
e‖x‖ − 1 dxn .

In the second line, we made the substitution xi = ~cjaki
kBT

. The additional kBT arises,
because the numerator ~cja‖k‖ lacks a 1

kBT
. For the integration boundaries, this leads

to [− π
ai
, π
ai

] → [− π~cja
aikBT

, π~cja
aikBT

] for the unit cell. The approximation in the third line
uses, that we are interested in the limiting case T → 0, such that the boundaries can
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be set to ±∞ as approximation. In three dimensions, the integral can be evaluated in
spherical coordinates dx3 = r2 sin(θ) drdθdφ:∫

R3

‖x‖
e‖x‖ − 1 dx3 = 4π

∫ ∞
0

r3

er − 1 dr = 4ππ
4

15 .

There are 3 acoustic branches. Replacing the cja by the averaged speed of sound cs, the
sum becomes ∑ja

1
c3s

= 3 1
c3s
. Plugging all in, we obtain:

U − E0 = π2

10
V

(~cs)3 (kBT )4 .

Specific heat

The specific heat per unit volume is defined by

CV = 1
V

∂U

∂T
.

For the limiting cases, this means:

low temperature: 2
5π

2kB
(
kBT
~cs

)3

high temperatures 3N d kB
.

T

CV

3N d kB

∼ T 3

const.

Figure 3.4: Specific heat

Debye model

The Debye model tries to model the internal energy between the limiting cases. It uses
the following two assumptions:

1. Instead of the Brillouin zone, choose a sphere (called Debye sphere) around
k = 0. The radius kD of the sphere is chosen, such that there are still N = ∏n

j=1Nj

discrete momenta contained:

N =
∑

k,‖k‖<kD

1 ≈ V

(2π)3

∫
k,‖k‖<kD

dk3 = V

6π2k
3
D ,
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⇒ kD = 3

√
6π2N

V
.

2. The dispersion relation is assumed to be ω(k) = cs‖k‖ for all phonons on the
whole Debye sphere. Here cs is again the averaged speed of sound.

The result of the Debye model for the internal energy, repeating the steps of the low
temperature limit, is:

U − E0 = 3d V2π2

(
kBT

~cs

)3

kBT
∫ ΘD

T

0

r3

er − 1 dr ,

where ΘD = ~ωD
kB

is the Debye temperature and ωD = cskD the Debye frequency.
Furthermore, the first assumption also yields V = 6π2N

k3
D

, such that (using that d ·N = Na

is the number of atoms):

U − E0 = 9Na

(
T

ΘD

)3
kBT

∫ ΘD
T

0

r3

er − 1 dr .

Phonon state density

Definition 3.3.5.
The phonon state density η(ω) dω is defined by

η(ω) := 1
N

n·d∑
j=1

∑
k

δ (ω − ωj(k))

The integration
∫ ω2
ω1
η(ω) dω of the phonon density yields the number of possible phonon

states per unit cell, with ωj(k) ∈ [ω1, ω2]. Hence, the phonon state density has the
following normalization: ∫ ∞

0
η(ω) dω = n · d .

Let e(x) = x
exp( x

kBT
)−1 , to keep the notation short.

Lemma 3.3.6.
The internal energy can be calculated as follows:

U − E0 = N
∫
R
η(ω)e(~ω) dω .

Proof 3.3.7.

N
∫
R
η(ω)e(~ω) dω =

n·d∑
j=1

∑
k

∫
R
δ (ω − ωj(k)) e(~ω) dω

=
n·d∑
j=1

∑
k

e(~ωj(k)) =
n·d∑
j=1

∑
k

~ωj(k)
exp

(
~ωj(k)
kBT

)
− 1
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= U − E0 .

In the integration approximation, the phonon state density function reads:

η(ω) ≈ 1
N

V

(2π)n
∑
j

∫
pc
δ(ω − ωj(k)) dkn .

For the Debye model, in 3 dimensions, we have ωj(k) = cs‖k‖,
∑
j 1 = 3d and V = 6π2N

k3
D:

n(ω) ≈ 3d
4πk3

D

∫
BkD (0)

δ(ω − cs‖k‖) dk3

= 3d
k3
D

∫ kD

0
r2δ(ω − csr) dr

= 3d
k3
D

∫ kDcs

0

(
x

cs

)2
δ(ω − x) dx

cs

= 3d
k3
D

ω2

c3
s

= 3d · ω2 ~3

(kBΘD)3 .



4
Non-interacting electrons in solids

For the Born-Oppenheimer approximation we assumed, that we can solve the Schrödinger equation
for the electrons, if the ion positions are fixed. However, the problem that made the Born-
Oppenheimer approximation necessary, also applies to the electron Schrödinger equation. The
huge number of electrons makes a direct solution impossible. To approximate the problem, we
assume non-interacting/weakly interacting electrons first.

4.1 Electrons in a periodic potential

Recall the Hamiltonian H0 from section 2.2:

H0 = Te + Vee + Vaa + Vea .

The ion-ion contribution is just an additive constant for fixed ion positions, such that
we can include it in Vea or set to zero. Non-interacting electrons means, that Vee ≡ 0.
This allows to treat the electrons individually, reducing the problem to a single particle
problem. Thus, we consider the following stationary Schrödinger equation:

Hψ(r) = Eψ(r) with H = T + V .

r
v(r)

r

Figure 4.1: Coulomb potential in one dimension.

For the ion positions R~j,α we assume that R~j,α = R~j + bα, where R~j is a Bravais
lattice point and bα the atom position. Let vα(r) denote the potential of the α-th ion
at the origin. Then, vα(r −R~j − bα) is the potential for the α-th ion at position R~j,α.
Thus:

V (r) =
∑
~j

∑
α

vα(r −R~j − bα) =:
∑
~j

ṽ(r −R~j) .

Because of the periodicity of the lattice (periodic boundary conditions), the potential
V is periodic w.r.t. Bravais vectors R~̀:

V (r +R~̀) =
∑
~j

ṽ(r −R~j +R~̀) =
∑
~m

ṽ(r −R~m) = V (r) .
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4.1.1 Application of Bloch’s theorem

The potential is invariant under Bravais vector translations. Hence the Hamiltonian
and translation operators commute [T~j, H] = 0. This allows to use Bloch’s theorem
(3.5) as ansatz for the Schrödinger equation:

Hψk(r) = Ekψk(r) with ψk(r) = ei〈k,r〉uk(r) .

Recall, that the Bloch functions uk are periodic, i.e. T~ju = u. Though the wave function
ψk is not periodic (unless k = 0), the electron density |ψk|2 is. Again, the momenta are
given by (3.6).
A direct calculation shows that:

∆ ei〈k,r〉uk(r) = ei〈k,r〉
(
−‖k‖2 + 2i

3∑
m=1

km∂m + ∆
)
uk(r) .

This leads to the equation
h(k)uk(r) = Ekuk(r) ,

with the effective Hamiltonian

h(k) = ~2

2m

(
‖k‖2 − 2i

3∑
m=1

km∂m −∆
)

+ V (r) .

This equation has to be solved for every k individually. We are only interested in bound
states, for which the energy is quantized. As usual, we use the quantum number n, to
label the energy levels:

h(k)un,k(r) = En,kun,k(r) . (4.1)

Because of the periodicity of V and uk, it is enough to solve this equation for r confined
to a unit cell.

Remark 4.1.1.
Because of the periodicity of un,k, the eave functions ψn,k are no L2(R3) functions,
i.e. have no normalization. However, since the solid is finite anyway, this is no
serious problem. Still, the periodic boundary conditions create an infinitely large
lattice. But, because of the restriction to the unit cell, there is still a normalization
possible: ∫

Vuc
un′,k′(r)un,k(r) dr3 = δn′nδk′k .

Let N be the number of unit cells, then the wave functions are normalized by∫
V
ψnk(r)ψnk(r) dr3 = Nδn′nδk′k .

Definition 4.1.2.
The energy dependence En,k of the momentum k is called electronic band. For
that reason, the index n is called band index, as it labels the electronic bands.

The effective Hamiltonian h(k) has no upper bound, such that unlike phonos, there are
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infinitely many electronic bands. The set of electronic bands is called band structure
of the solid. It can happen, that En,k = En′,k for n 6= n′. This is called band
degeneracy.

4.1.2 Fourier transformation of the Schrödinger equation

The goal of this subsection is to diagonalize Hψ(r) = Eψ(r). Having section 1.2 in
mind, we find:

V (r) =
∑
G∈L̃

VGe
i〈G,r〉 and ψ(r) =

∑
q∈S

ψqe
i〈q,r〉 .

The wave functions are not lattice periodic, but only satisfy the periodic boundary
conditions form subsection 3.2.3. For the set S, the q are summed over, it follows that

S =
q

∣∣∣∣∣∣ q =
n∑
j=1

mj

Nj

gj , mj ∈ Z

 ,

where the gj are the reciprocal primitive vectors. It follows that:

Hψ(r) = . . . =
∑
q

~2‖q‖2

2m +
∑
G∈L̃

VGe
i〈G,r〉

ψqei〈q,r〉
= En

∑
q

ψqe
i〈q,r〉 .

With the substitution q′ = q −G:∑
q,G

VGψqe
i〈G+q,r〉 =

∑
q′,G

VGψq′−G ei〈q
′,r〉 =

∑
q,G

VGψq−G ei〈q,r〉 ,

where we relabeled q′ in the last step. Hence:

∑
q

(~2‖q‖2

2m − En
)
ψq−G +

∑
G∈L̃

VGψq−G

 ei〈q,r〉 = 0 .

The ei〈q,r〉 are linearly independent and non-zero, such that the brackets must be zero
for each q individually. Furthermore, it is possible, that the energy E depends on the
momentum q. Thus, we obtain the following equation(

~2‖q‖2

2m − Eq
)
ψq−G +

∑
G∈L̃

VGψq−G = 0 .

Any q can be written as

q = k +K , with K ∈ L̃ and k =
n∑
j=1

mj

Nj

gj ,

where mj = −Nj

2 ,−Nj

2 + 1, . . . , Nj

2 − 1 .



32 Chapter 4 Non-interacting electrons in solids

Hence, k = q −K is again restricted to the Brillouin zone. Substituting G by G+K
in the sum leads to(

~2‖k −K‖2

2m − EK(k)
)
ψk−K +

∑
G∈L̃

VG−Kψk−G = 0 . (4.2)

For the energies, we have used the notation EK(k) := Ek−K . Here, K is the band
index.

Remark 4.1.3.
We recall that (here we choose the Brillouin zone)

VG = 1
VBz

∫
Bz
V (r)e−i〈G,r〉 dr3 .

For real potentials, this leads to

VG = 1
VBz

∫
Bz
V (r)e−i〈G,r〉 dr3 = 1

VBz

∫
Bz
V (r)ei〈G,r〉 dr3

= V−G .

4.2 Nearly free electrons

In this section, we focus on the valance electrons. The bound electrons shield the
valence electrons partially from the positively charged nuclei, i.e. decrease the potential
V . To solve (4.2), the potential is treated as perturbation, with zeroth order V = 0:(

~2‖k −K‖2

2m − EK(k)
)
ψk−G ⇒ EK(k) = ~2‖k −K‖2

2m

k

E

π
a

2π
a

3π
a

−π
a

−2π
a

−3π
a

E

π
a

−π
a

Figure 4.2: Electronic bands in one dimension and their restriction to the Brillouin zone.

In one dimension, the electronic bands are thus:

En(k) = ~2

2m

(
k − 2π

a
n
)2

, n ∈ Z .
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For the band labeling we identify n and −n.
With EK(k) = ~2‖k−K‖2

2m , the equation Fourier transformed Schrödinger equation can
be written

(EK(k)− E)ψk−K = −V0ψk−K −
∑

L̃3G6=K

VG−Kψk−G ,

where V0 = VK−K and E is the eigen energy with potential. Fixing a new gauge we can
set V0 = 0, i.e. setting V ′ = V − V0:

⇒ (EK(k)− E)ψk−K = −
∑

L̃3G6=K

VG−Kψk−G . (4.3)

The perturbative treatment of (4.3) looks as follows:

• Solve (4.3) for ψK(k):

ψk−K = 1
E − EK(k)

∑
G6=K

VG−Kψk−G .

and adjust the indices for the next step:

⇒ ψk−G = 1
E − EG(k)

∑
G̃6=G

V
G̃−Gψk−G̃ . (4.4)

• In the second step, we rewrite (4.3) into

E = EK(K) + 1
ψk−K

∑
G6=K

VG−Kψk−G

and plug (4.4) in:

E = EK(K) + 1
ψk−K

∑
G6=K

VG−K
E − EG(k)

∑
G̃6=G

V
G̃−Gψk−G̃ (4.5)

• Consider the last sum of (4.5), and split it∑
G̃ 6=G

V
G̃−Gψk−G̃ = VK−G + ψk−K

∑
G̃6=G,K

V
G̃−Gψk−G̃

Hence (4.5) reads:

E = EK(K) +
∑
G 6=K

VG−KVK−G
E − EG(k)

+ 1
ψk−K

∑
G6=K

∑
G̃ 6=G,K

VG−KVG̃−G
E − EG(k) ψk−G̃ . (4.6)

• So far, all steps have been exact. Repeating the same procedure, i.e. plugging
in (4.4), show that the the double sum term in (4.6) is of order O(V 3). The first
approximation is (using remark 4.1.3):

E = EK(K) +
∑
G6=K

|VG−K |2

E − EG(k) +O(V 3) .



34 Chapter 4 Non-interacting electrons in solids

• For the next approximation, we recall that band degeneracies can occur. We
intend to set E to EK(K) on the right hand side since we assume V 2 to be small
enough. Let Kd be the point of band degeneracy for k. Splitting the sum we can
thus approximate:

E = EK(K) + |VKd−K |2

E − EKd
(k) +

∑
G6=K,Kd

|VG−K |2

EK(k)− EG(k) +O(V 3) .

• In the preceding approximation we used that E = EKd
(k) ≈ EK(K). Since we

have filtered out K and Kd in the sum, the term EK(k)−EG(k) is large. Hence,
the sum term can also be neglected, leading to the approximation for E :

E = EK(K) + |VKd−K |2

E − EKd
(k) (4.7)

Recalling, that we have started with an equation (4.3) for the K-th electronic band,
we write E = EK(k). Solving (4.7) for E = EK(k) leads to

E±K(k) = 1
2

(
EK(k) + EKd

(k)±
√

(EK(k)− EKd
(k))2 + 4|VKd−K |2

)
.

There is an important case to discuss here. In the point k of band degeneracy it holds

band gap

band gap

E

π
a

−π
a

Figure 4.3: One dimensional case (see fig. 4.2) with band gaps.

that EKd
(k) = EK(k). Then we find

E±K(k) = EK ± 2|VKd−K | .

This means, that the band degeneracy vanishes and the bands K and Kd become
separated by an energy gap of 2|VKd−K |. This separation of bands is called band gap.
Also note, that the bands are labeled by {K,±} now.
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4.3 The effective mass

We return to (4.1), where we can write the effective Hamiltonian as

h(k) = ~2

2m‖k‖
2 − i~2

m
k · ~∇− ~2

2m∆ + V (r)

=
(
− ~2

2m∆ + V (r)
)

+
(
~2

2m‖k‖
2 + ~

m
k · p

)
≡ h(0) + h1(k) .

Assuming to have found a solution for the case k = 0, i.e.

h(0)un,0(r) = En,0un,0(r) ,

we can consider the full equation for small k as perturbation problem in k · p with
perturbation Hamiltonian h1(k). In most cases, it holds that {En,0} is non-degenerate,
which we assume here to be true in general.

4.3.1 The Rayleigh-Schrödinger approximation

The perturbation problem can be solved with the Rayleigh-Schrödinger approximation.
Here, we sketch the treatment of [Sch13, section 11.1]
Consider the Hamiltonian H = H0 + λh, where h is the perturbation and λ the

development coefficient. Assume that for H0, the eigen states |n0〉 and eigen energies
E0(n) are known:

H0|n0〉 = E0(n)|n0〉 ,
and that the kern0 are a Hilbert basis. Also, we use that the eigen energies are
non-degenerate.
The goal is to find the solution for

H|n〉 = E(n)|n〉 .

We expand these solutions in orders of the development coefficient:

E(n) = E0(n) + λE1(n) + λ2E2(n) + . . . and |n〉 = |n0〉+ λ|n1〉+ λ2|n2〉+ . . . .

With the normalization 〈n0, nj〉 = δ0j. Plugging in, leads to:

H|n〉 = (H0 + λh)
∑
j

λj|nj〉 =
∑
j

λjEj(n)
∑
`

λ`|n`〉 .

⇒
∑
j

λjH0|nj〉+ λj+1h|nj〉 =
∑
j+`

λj+`Ej(n)|n`〉 .

Comparing the coefficients shows that:

zeroth order: H0|n0〉 = E0(n)|n0〉

first order: H0|n1〉+ h|n0〉 = E0(n)|n1〉+ E1(n)|n0〉

second order: H0|n2〉+ h|n1〉 = E0(n)|n2〉+ E1(n)|n1〉+ E2(n)|n0〉

.
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Multiplying 〈n0| from the left with the first order, we obtain

E1(n) = 〈n0|h|n0〉 .

For the second order contribution E2(n), we use, that {|n0〉} is a Hilbert basis, such
that

|n1〉 =
∑

m0 6=n0

c(m)|m0〉 .

The case m0 = n0 could be excluded, because 〈n0|n1〉 = 0. Plugging this development
in into the first order, and multiplying from the left with 〈m̃0| 6= 〈n0| it follows that:

c(m̃)(E0(n)− E0(m̃)) = 〈m̃0|h|n0〉 .

Because of the assumed non-degeneracy, we can divide by (E0(n)− E0(m̃)) to find the
development coefficient:

c(m̃) = 〈m̃0|h|n0〉
(E0(n)− E0(m̃))

⇒ |n1〉 =
∑

m0 6=n0

〈m0|h|n0〉
(E0(n)− E0(m)) |m0〉 .

Plugging this in, into the second order, and multiplying from the left with 〈n0|, we find:

E2(n) = E0(n) + 〈n0|h|n1〉 =
∑

m0 6=n0

〈m0|h|n0〉〈n0|h|m0〉
(E0(n)− E0(m)) =

∑
m0 6=n0

|〈m0|h|n0〉|2

(E0(n)− E0(m)) .

The development coefficient was a tool to develop the perturbation, and is usually
contained in the perturbation Hamiltonian h = λh. With this, the energy, developed to
second order reads:

E(n) = E0(n) + 〈n0|h|n0〉+
∑

m0 6=n0

|〈m0|h|n0〉|2

(E0(n)− E0(m)) . (4.8)

4.3.2 Application of the Rayleigh-Schrödinger
approximation

To make the application of (4.8) more easy at a notational level, we define un,k(r) =
〈r|n,k〉. Then

h(0)|n, 0〉 = En,0|n, 0〉 .
For the energies in second order approximation, (4.8) results in:

En,k = En,0 + 〈n, 0|h1(k)|n, 0〉+
∑
m 6=n

|〈m, 0|h1(k)|n, 0〉|2
(En,0 − Em,0) . (4.9)

For the first order contribution, we observe, that V (r) = V (−r) because of the
periodicity and since 0 = R0 is a lattice point. Then, the operator S, defined by
Sf(r) = f(−r) and h(0) commute, such that the un,0(r) can be chosen to be symmetric:
un,0(r) = un,0(−r).
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Corollary 4.3.1.
It holds that

〈n, 0|k · p|n, 0〉 = 0 .

Proof 4.3.2.
In position representation, it holds that

〈n, 0|k · p|n, 0〉 = −i~2m

∫ ∞
−∞

dr1 . . .
∫ ∞
−∞

dr3 un,0(r)
∑
j

kj∂jun,0(r) .

Since un,0(r) is symmetric, ∂jun,0(r) is antisymmetric in rj . Then un,0(r)kj∂jun,0(r)
is also antisymmetric, and∫ ∞

−∞
drj un,0(r)kj∂jun,0(r) = 0 .

This term can be achieved for all j, by changing the order of the integration for
each summand of ∑j un,0(r)kj∂jun,0(r).

Thus, the first order contribution is

〈n, 0|h1(k)|n, 0〉 = ~2

2m‖k‖
2 .

For the second order contribution we calculate:

〈m, 0|h1(k)|n, 0〉 = 〈m, 0| ~2

2m‖k‖
2|n, 0〉︸ ︷︷ ︸

=δmn

+ 〈m, 0| ~
m
k · p|n, 0〉 .

Hence (4.9) can be written as

En,k = En,0 + ~2

2m‖k‖
2 + ~

m

∑
α,α′

kαkα′
∑
m 6=n

〈n, 0|pα|m, 0〉〈m, 0|pα′ |n, 0〉
(En,0 − Em,0) (4.10)

This is an approximation for En,k valid for small k. This shows, that around k = 0 the
bands (i.e. En,k) are quadratic in the kα.
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4.3.3 The effective mass tensor

Definition 4.3.3.
The effective mass 1

m∗(n) is a (0, 2) tensor, defined by
(

1
m∗(n)

)
αβ

= 1
~

∂2

∂kα∂kβ
En,k .

In case of free electrons the enrgies are En,k = ~2‖k‖2
2m , such that(

1
m∗(n)

)
αβ

= 1
m
δαβ .

So for free electrons, the effective mass and the mass are the same. For the second
order approximated energies, En,k, the effective mass reads:(

1
m∗(n)

)
αβ

= 1
m
δαβ + 2

m2

∑
m 6=n

〈n, 0|pα|m, 0〉〈m, 0|pβ|n, 0〉
(En,0 − Em,0) .

This allows to write (4.10) in terms of the effective mass:

En,k = En,0 + ~2

2
∑
αβ

(
1

m∗(n)

)
αβ

kαkβ . (4.11)

4.4 The tight binding model

Not all electrons are valance electrons. In fact, most electrons are strongly bound by
the Coulomb potential, i.e. are tightly bound to the nuclei. The tight binding model
follows this idea, and assumes the potentials to be strong. This is the opposing limiting
case, compared to the nearly free electron model.

We recall the construction of the lattice potential from section 4.1. The potential of
an atom group, that belongs to a Bravais lattice position R~j is ṽ(r−R~j). For the tight
binding model, assume, that the problem for a single position has been solved , i.e.

Haϕn(r) = Enϕn(r) with H = −~
2

2m ∆ + ṽ(r) .

Remark 4.4.1.
Although Ha is the Hamiltonian for an atom group, we still call it single atom
Hamiltonian. In the same way, the ϕn are called single atom solutions, etc.

This solution is applicable for arbitrary Bravais lattice positions R ∈ L by

Ha,Rϕn(r −R) = Enϕn(r −R) with Ha = −~
2

2m ∆ + ṽ(r −R) .

The full Hamiltonian from section 4.1 can be written as

H =
(
−~2

2m ∆ + ṽ(r −R)
)

+
 ∑
L3R′ 6=R

ṽ(r −R)
 ≡ Ha,R + UR(r) . (4.12)
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It follows that

Hϕn(r −R′) = Ha,R′ϕn(r −R′) + UR′(r)ϕn(r −R′) . (4.13)

4.4.1 Terminology and idea behind the tight binding model

By construction, the solutions ϕn(r−R) of the single atom Hamiltonian Ha,R describe
particles, that are bound to the atom(s) at position ~R. One says, the solutions ϕn(r−R)
are localized at ~R.

The interpretation of (4.12) is the following. The full Hamiltonian is the single atom
Hamiltonian Ha,R, with potenital contributions form the remaining atoms UR(r). The
terms O(r) := RR(r)ϕn(r −R) (see (4.13)) are called overlaps of the states with the
potentials of the other atoms.

Remark 4.4.2.
The name overlap can be motivated from the probability amplitude. If O(r) is
non-zero at r, this means that |O(r)| 6= 0, which in turn means, that neither
|ϕn(r −R)| nor |UR(r)| are zero at r. This is the case for all r, where the hyper
surfaces r → |UR(r)| and r → |ϕn(r −R)| overlap.

If the overlap tends to zero, the localized solutions become solutions of the full Hamil-
tonian.
The idea of the tight binding model is to assume, that the overlap is small, i.e.

confined to neighboring atoms. Then, an approximative solution of the full Hamiltonian
can be constructed from localized states. The smaller the overlap, the better the
approximation is.

4.4.2 No overlap

Define a function that satisfies the Bloch condition by

ψn,k(r) := 1√
N

∑
R∈L

ei〈k,R〉ϕn(r −R) .

Indeed, it holds that:
√
Nψn,k(r +R′) =

∑
R∈L

ei〈k,R〉ϕn(r −R+R′)

=
R′′=R−R′

∑
R∈L

ei〈k,R
′〉ei〈k,R

′′〉ϕn(r −R′′)

= ei〈k,R
′〉
√
Nψn,k(r) .

A Bloch function is then given by (see (3.5) ):

vn,k(r) = e−i〈k,r〉ψn,k(r) .

If the overlap is zero, i.e. OR(r) = 0, then because of (4.13) and since En does not
depend on R, the functions ψn,k(r) are eigen states of the full Hamiltonian:

Hψn,k(r) = Enψn,k(r) .

The consequence are dispersionless bands, i.e. En does not depend on k.
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Figure 4.4: Dispersionless bands in one dimension.

4.4.3 General approximation for the overlap case

If the overlap is non-zero, the single atom solutions will no longer work exactly. To
approximate the energies En,k, we want to use the Ritz variation method. Having the
idea of localization in the tight binding in mind, we generalize the definition of the ψn,k
to

Definition 4.4.3.
The trail functions for the tight binding model are defined by

ψn,k(r) := 1√
N

∑
R∈L

ei〈k,R〉φn(r −R) ,

where the functions φn,R(r) ≡ φn(r −R) are localized at R

In the general case, the trail functions are not orhonormal:

Lemma 4.4.4.
For the ψn,k it holds that:

〈ψn,k|ψm,`〉 = δnm +
∑

K 6=0∈L
e−i〈k,K〉αnm(K) ,

where αnm(K) =
∫
R3 dr′3 φn(r′ −K)φm(r′).

Proof 4.4.5.

〈ψn,k|ψm,`〉 = 1
N

∑
R,G∈L

e−i〈k,R〉ei〈k,G〉
∫
R3

dr3 φn(r −R)φm(r −G)

=
r′=r−G

1
N

∑
R,G∈L

ei〈k,G−R〉
∫
R3

dr′3 φn(r′ +G−R)φm(r′)
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=
K=R−G

1
N

∑
R∈L

∑
K∈L

e−i〈k,K〉
∫
R3

dr′3 φn(r′ −K)φm(r′)︸ ︷︷ ︸
does not depend on R and

∑
R

1=N

=
∑
K∈L

e−i〈k,G〉
∫
R3

dr′3 φn(r′ −K)φm(r′)

≡
∑
K∈L

e−i〈k,K〉αnm(K)

= αnm(0) +
∑

K 6=0∈L
e−i〈k,K〉αnm(K)

= δnm +
∑

K 6=0∈L
e−i〈k,K〉αnm(K) .

In the last line we used, that {φn(r)} are orthonormal, i.e. αnm(0) = δnm.

For the Ritz variation method, we need to calculate:

En,k = 〈ψn,k|H|ψn,k〉
〈ψn,k|ψn,k〉

.

The term 〈ψn,k|ψn,k〉 has already been calculated in lemma 4.4.4. We also have to
calculate 〈ψn,k|H|ψn,k〉. With (4.13) and the definition of UR(r) = ∑

L3R′ 6=R ṽ(r −R)
one obtains

〈ψn,k|H|ψn,k〉 =
∑
R

〈ψn,k|Ha,R|ei〈k,R〉φn,R〉

+ 1
N

∑
R1,R2

∑
R3 6=R2

ei〈k,R2−R1〉
∫
R3
dr3 φn(r −R1)φn(r −R2)ṽ(r −R3) .

(4.14)

The functions φn(r − R1), φn(r − R2) and ṽ(r − R3) are localized at R1, R2 and
R3 respectively. If R1 6= R2 6= R3, , i.e. the Rj are pair wise disjoint, for all r,
there is a product of two functions that have small overlap, such that this case will be
neglected. If however two of the Rj ’s are equal, then there is a region, where the overlap
of the corresponding functions is large. These cases can not be neglected. The case
R1 = R2 = R3 is forbidden. In the following we consider the remaining two possible
cases:

R1 = R2 6= R3

Fixing R2 = R1, the double sum ∑
R1,R2 becomes a single sum ∑

R1 . Also, we will use
the substitution r′ = r −R1, such that

UR1(r′ +R1) =
∑

R3 6=R1

ṽ(r′ +R1 −R3) =
∑
K∈L

ṽ(r′ −K) = U0(r′) ,

since for R3 6= R1 the difference R1 −R3 never is zero. Hence the second line of (4.14)
becomes:

1
N

∑
R1

∑
R3 6=R1

ei〈k,0〉
∫
R3
dr3 φn(r −R1)φn(r −R1)ṽ(r −R3)
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= 1
N

∑
R1

ei〈k,0〉
∫
R3
dr3 φn(r −R1)φn(r −R1)UR1(r)

= 1
N

∑
R1

∫
R3
dr′3 φn(r′)φn(r)UR1(r′ +R1)︸ ︷︷ ︸

=U0(r′)

= 1
N

∫
R3
dr′3 φn(r′)φn(r)U0(r′)

∑
R1

1

=
∫
R3
dr′3 φn(r′)φn(r)U0(r′)

≡ βn .

This is just a constant.

R1 = R3 6= R2

In this case, we will substitute R = R1 −R2. Then, the sum ∑
R2 6=R1 becomes ∑R 6=0.

For the second line of (4.14) we find:
1
N

∑
R1

∑
R2 6=R1

ei〈k,R2−R1〉
∫
R3
dr3 φn(r −R1)φn(r −R2)ṽ(r −R1)

=
r′=r−R2

1
N

∑
R1

∑
R2 6=R1

ei〈k,R2−R1〉

∫
R3
dr′3 φn(r′ −R1 +R2)φn(r′)ṽ(r −R1 +R2)

= =
R=R1−R2

1
N

∑
R 6=0

e−i〈k,R〉
∫
R3
dr′3 φn(r′ −R)φn(r′)ṽ(r −R)

∑
R1

1

=
∑
R 6=0

e−i〈k,R〉
∫
R3
dr′3 φn(r′ −R)φn(r′)ṽ(r′ −R)

≡
∑
R 6=0

e−i〈k,R〉λn(R) .

Collecting the results

Collecting the results, we obtain:

En,k = En +
βn +∑

R 6=0 e
−i〈k,R〉λn(R)

1 +∑
R 6=0∈L e−i〈k,R〉αnn(R) . (4.15)

Remark 4.4.6.
Here we defined

En = 1
〈ψn,k|ψn,k〉

∑
R

〈ψn,k|Ha,R|ei〈k,R〉φn,R〉 .

Although at first not known, if the φn,R diagonalize the single atom Hamiltonian
i.e. 〈φn,R|Ha,R|φn′,R′〉 = cnδnn′δRR′ , one finds

En = cn .
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If one uses φn,R = ϕn,R one even obtains En = En. Hence the notation.

We can expand the fraction of (4.15) by 1−∑R 6=0∈L e
−i〈k,R〉αnn(R):

En,k = En +
βn + ∑

R 6=0
e−i〈k,R〉 (λn(R)− βnαnn(R)) + ∑

R,R′ 6=0
A(R,R′)

1−
( ∑
R 6=0∈L

e−i〈k,R〉αnn(R)
)2 ,

where the double sum term is A(R,R′) = e−i〈k,R+R′〉λn(R)αnn(R′). Now we assume,
that ∑

R 6=0∈L
e−i〈k,R〉αnn(R) and ∑R 6=0 e

−i〈k,R〉 are small, such that the square terms

A(R,R′) and
 ∑
R 6=0∈L

e−i〈k,R〉αnn(R)
2

can be neglected. We define γn(R) = λn(R)− βnαnn(R) and obtain:

En,k = En +
∑
R 6=0

e−i〈k,R〉γn(R) . (4.16)

The Ritz variation approximation is now, to choose the φn to be depending on some
parameters, and to minimize En,k with respect to these parameters.

4.4.4 Wannier functions

A first approximation for the trail functions would be to return to the initial definition
of the ψnk, i.e. to use φn,k(r −R) = ϕn,k(r −R). However, for the ϕn,k(r −R)∫

R3
dr3 ϕn(r −R)ϕn′(r −R′) 6= δnn′δRR′ .

Hence αnn′(R) 6= 0 which is the reason why the ψn,k are not orthonormal. For that
reason we formally define:

Definition 4.4.7.
The Wannier functions are functions wn,R(r) ≡ wn(r −R), that are localized
at R and that satisfy

〈wn,R|wn′,R′〉 = δnn′δRR′ .

Choosing the Wannier functions, i.e. φn(r − R) = wn(r − R), the ψn,k become
orthonormal in the exitation:

〈ψn,k|ψm,`〉 = δnm .

Also, for the Wannier functions, αnn(R) = 0 by definition, such that one obtains (4.16)
from (4.15) without further assumptions.

However, the Wannier functions are not known (except for numerical approximations
and in toy models). If one new the orthonormal solutions of the full Hamiltonian,
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HΨn,k(r) = En,kΨn,k(r) (yet, in this case on would not need the Wannier functions in
the first place), they could be constructed by

wn(r −R) = 1√
N

∑
k∈B.z.

e−i〈k,R〉Ψn,k(r) .

A direct calculation shows, that the orthonormality condition is satisfied. The localiza-
tion property depends on the Ψn,k.

4.4.5 Example: d-dimensional cubic lattice with nearest neighbor
interaction

The lattice vectors of a cubic Bravais lattice areR~m = a· ~m. Nearest neighbor interaction
means, that we assume, that the overlaps at R = 0 are only meaningful for the nearest
neighbors. For γn(R) from (4.16) this assumption translated to

γn(R) =
{
−tn ,mj = 1 for only one j
0 , else

The minus sign can be motivated as follows. We assume αnn(R) to be small (or zero in
the case of Wannier functions). Then γn(R) ≈ λn(R), which describes an attracting
potential. Plugging in into (4.16) and using trigonometric identities yields:

En,k = cn − tn
d∑
j=1

(
e−ikja + eikja

)

= cn − tn
d∑
j=1

cos(kja) .

k

E

π
a

−π
a

cn

Figure 4.5: Dispersion relation of a one dimensional cubic lattice with nearest neighbor interaction.

4.5 Density of electron states and Fermi surface

As with phonons, we can define an electron state density.
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Definition 4.5.1.
The electron state density ρ(E) dE is defined by

ρ(E) = 1
N

∑
n,σ

∑
k∈B.z.

δ(E − En(k, σ)) ,

where n is the band index as usual and σ is the spin index.

If the energies do not depend on the spin (e.g. free electrons), the sum over the spins
results in a factor 2.

Contrary to phonons, electrons are fermion. Because of the Pauli exclusion principle,
the electron can not all be in the lowest energy state. Each state (n,k, σ) can only be
occupied by one electron. The ground state is thus obtained by successively filling the
lowest energy states. The energy, occupied by the last electron added to obtain the
ground state, i.e. the largest occupied energy state, is called Fermi energy EF . With
the electron state density, the Fermi energy can be formally defined as follows:

Definition 4.5.2.
The Fermi energy EF is the upper boundary, such that∫ EF

0
ρ(E) dE = Ne ,

where Ne is the number of electrons.

A ready example for the electron state density is the free electron model in the
continuum approximation (∑k → V

(2π)3

∫
d3k). Since the energy bands are degenerate

at the boundary of the Brillouin zone, the sum of the bands becomes:

∑
K∈L̃

EK(k) =
∑
K∈L̃

~2‖k −K‖2

2m = E(k) = ~2‖k‖2

2m ,

where k is no longer restricted to the Brillouin zone on the right hand side. Then, the
electron state density can be calculated by integration,1 since it does not depend on
the spin:

ρ(E) = 1
N

∑
K,σ

∑
k∈B.z.

δ

(
E − ~2‖k −K‖2

2m

)

= 2
N

∑
k∈L̃

δ

(
E − ~2‖k‖2

2m

)
≈ 2V

(2π)3N

∫
R3
dk3 δ

(
E − ~2‖k −K‖2

2m

)

= 8πV
(2π)3N

∫ ∞
0

dr r2δ

(
E − ~2r2

2m

)
= 8πV

(2π)3N

∫ ∞
0

dr r2 δ(r − 1
~

√
2mE)

~
m

√
2mE

= V m

Nπ2~3

√
2mE .

1For a delta function it holds that δ(f(x)) =
∑
j

δ(x− xj)
|f ′(xj)|

, where the {xj} are the zeros of f(x).
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For the Fermi energy it follows that

Ne =
∫ EF

0
dE

V m

Nπ2~3

√
2mE = V

3Nπ2~3 (2mEF ) 3
2 ,

⇒ EF = ~2

2m

(
3Nπ2Ne

V

) 2
3

.

Definition 4.5.3.
The Fermi surface is S(EF ), where S(E) is defined by

S(E) = {k ∈ B.z. | En(k) = E} .

The Fermi surface separates the momentum space into the part that is occupied in the
ground state (En(k) ≤ EF ) and the part that is unoccupied (E > EF ). For the free
electrons, it is a sphere with radius kF =

√
2mEF
~ .

4.6 Thermodynamics of electrons in a solid

As in subsection 3.3.2, the occupation numbers {n`,k,σ} describe the micro state. Here
n`,k,σ is the number of electrons in the (`,k, σ) state with energy E`(k, σ). Since
electrons are fermions, the n`,k,σ are either 1 or 0. Another result form statistical
mechanics is the so called Fermi-Dirac statistics:

〈n`,k,σ〉 ≡ f(E`(k, σ)) = 1
exp

(
E`(k,σ)−µ

kBT

)
+ 1

.

The total number of electrons is given by

E
µ

0

〈n〉

T0 = 0

1
T2

T3T1

Figure 4.6: Energy dependence of the particle number expectation value for the Fermi-Dirac statistics
for different temperatures T0 = 0 < T1 < T2 < T3.

Ne =
∑
`,k,σ

n`,k,σ .
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We chose the chemical potential µ, such that the expectation value of the electron
number is the electron number:

Ne
!= 〈Ne〉 =

∑
`,k,σ

〈n`,k,σ〉 =
∑
`,k,σ

f(E`(k, σ)) =
∫
R
ρ(E)f(E) dE .

The last step can be proven in exactly the same way2 as lemma 3.3.6. This also yields:

U = 〈E〉 =
∑
`,k,σ

〈n`,k,σ〉E`(k, σ) =
∫
R
Eρ(E)f(E) dE .

4.6.1 Sommerfeld expansion

The Sommerfeld expansion is a method to evaluate integrals of the type
∫∞
−∞ h(E)f(E) dE,

where f(E) is the Fermi-Dirac statistics. However, for the method to work, h(E) has
to be smooth and fast decaying for E → −∞.

Remark 4.6.1 (Warning of application).
In the case of interest, h(E) = Eρ(E) is not even a function, but the kernel
representation of a singular distribution. To solve this, one can smear out the
delta functions of ρ(E) to Gaussian functions, obtaining ρ̃(E). Then Eρ̃(E) is
smooth, yet fast decaying. This can be fixed by multiplying with an appropriate
cutoff function, such that one obtains h(E) = Ec(E)ρ̃(E). This discussion is
usually omitted in the physical literature and one identifies ρ(E) = c(E)ρ̃(E). In
the following subsections, we will do the same, but keeping this regularization in
mind.

With this assumption fast decay for E → −∞ it follows the antiderivative of h(E) also
has fast decay, up to a constant. So let H(E) + c be an antiderivative of h(E), such
that H(E) has fast decay for E → −∞:

H(E) =
∫ E

−∞
h(A) dA .

Using partial integration, we find:∫ ∞
−∞

h(E)f(E) dE = [H(E)f(E)]∞−∞ + [cf(E)]∞−∞

−
∫ ∞
−∞

cf ′(E) dE −
∫ ∞
−∞

H(E)f ′(E) dE

= [H(E)f(E)]∞−∞ + [cf(E)]∞−∞
− [cf(E)]∞−∞ −

∫ ∞
−∞

H(E)f ′(E) dE

= [H(E)f(E)]∞−∞ −
∫ ∞
−∞

H(E)f ′(E) dE

=
∫ ∞
−∞

H(E)(−f ′(E)) dE .

2Note that in the lemma e(~ω) = ~ωg(~ω), if g(~ω) is the Bose-Einstein statistics.
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In the last line, [H(E)f(E)]∞−∞ vanishes, becauseH(E)→ 0 for E → −∞ and f(E)→ 0
for E →∞. The derivative of the Fermi-Dirac statistics is

−f ′(E) = 1
kBT

1(
exp

(
E`(k,σ)−µ

kBT

)
+ 1

) (
exp

(
−E`(k,σ)−µ

kBT

)
+ 1

)
This is a function that is symmetric around E = µ and decays for E → ±∞. In

E
µ

0 1

f(E)

−f ′(E)

Figure 4.7: Fermi-Dirac statistics f(E) and its negative derivative −f ′(E).

fact, the lower the temperature, the faster the decay, until it becomes a delta peak
(see figure 4.7). This makes sense, as f(E)T=0 is just a Heaviside function. Since the
main contribution, where H(E)f ′(E) is non zero is in a small interval [µ− ε, µ+ ε] for
sufficiently small temperatures, the function H(E) can be developed as Taylor series:

H(E) = H(µ) +
∞∑
n=1

H(n)(µ)
n! (E − µ)n

=
∫ µ

−∞
h(E) dE +

∞∑
n=1

h(n−1)(µ)
n! (E − µ)n .

For the second line, we used the definition of H(E) as constant less antiderivative
of h(E). For the Fermi-Dirac statistics it holds that F (E) → 1 for E → −∞ and
f(E)→ 0 for E →∞, such that

∫ ∞
−∞
−f ′(E) dE = −[f(E)]∞−∞ = −[0− 1] = 1 .

We are also going to use the substitution E = kBT (x+ µ), such that dE = kBTdx and

−f ′(E) = −f(kBT (x+ µ)) = 1
kBT

1
(ex + 1)(e−x + 1) .
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With these results at hand, we can continue to calculate
∫∞
−∞ h(E)f(E) dE:

∞∫
−∞

h(E)f(E) dE =
µ∫

−∞

h(E) dE +
∞∑
n=1

h(n−1)(µ)
n!

∞∫
−∞

(E − µ)n(−f ′(E)) dE

=
µ∫

−∞

h(E) dE +
∞∑
n=1

h(n−1)(µ)
∞∫
−∞

(kBT )nxn
n!

1
(ex + 1)(e−x + 1) dx

The function xn

(ex+1)(e−x+1) is odd, for odd n, such that the second integral vanishes
whenever n is odd. As short notation, we define

am =
∞∫
−∞

x2m

(2m)!
1

(ex + 1)(e−x + 1) dx .

Then we arrive at:
∞∫
−∞

h(E)f(E) dE =
µ∫

−∞

h(E) dE +
∞∑
m=1

h(2m−1)(µ)(kBT )2mam . (4.17)

With further analysis (e.g. contour integration), one can show, that am can be expressed
in term of the Riemann zeta function. However, we will only use the first order
approximation (i.e. neglect terms of order O(T 4)), such only a1 is needed. It can be
shown that a1 = π2

6 .
∞∫
−∞

h(E)f(E) dE =
∫ µ

−∞
h(E) dE + π2

6 h
(1)(µ)(kBT )2 +O(T 4) . (4.18)

4.6.2 The chemical potential

We return to the thermodynamics of electrons and calculate 〈Ne〉 with (4.18):

〈Ne〉 =
∫ ∞
−∞

ρ(E)f(E) dE ≈
∫ µ

−∞
ρ(E) dE + π2

6 ρ
′(µ)(kBT )2

Looking at figure 4.6, we can assume that µ = µ(T ) ≈ EF and thus

ρ′(µ) ≈ ρ′(EF ) .

For T = 0 this has to be exact, as all states below E = µ = EF are occupied.
This assumption is compatible with the Sommerfeld expansion, which required small
temperatures T in the first place. This allows to approximate:∫ µ

EF
ρ(E) dE ≈ ρ(EF )(µ− EF ) .

Using the definition of the Fermi energy, 4.5.2, we get∫ ∞
−∞

ρ(E)f(E) dE =
∫ EF

−∞
ρ(E) dE +

∫ µ

EF
ρ(E) dE ≈ Ne + ρ(EF )(µ− EF ) .
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⇒ 〈Ne〉 = Ne + ρ(EF )(EF − µ) + π

6ρ
′(µ)(kBT )2 .

The chemical potential is chosen, such that 〈Ne〉 = Ne:

⇒ µ = EF −
π2

2
ρ′(EF )
ρ(EF ) (kBT )2 . (4.19)

4.6.3 The specific heat

To calculate the specific heat, we need to calculate the internal energy first. With the
same assumptions as in the last subsection it follows3:

U = U0 + EFρ(EF )(µ− EF ) + π

6 (ρ(EF ) + EFρ
′(EF )) (kBT )2 .

Here U0 =
∫ EF
−∞Eρ(E) dE. Plugging (4.19) in we find:

U = U0 + π2

6 ρ(EF )(kBT )2 .

The specific heat then reads:

Cv(T ) = π2

3V ρ(EF )k2
BT .

3Here h′(EF ) = d
dE (Eρ(E))

∣∣
EF

= ρ(EF ) + EF ρ
′(EF )
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Outlook: Electron-electron interaction
In the last chapter, we treated the electrons as non-interacting and obtained qualitative results.
However, because of their charge, electrons have a strong interaction. In this chapter we give an
outlook on how to include the electron-electron interaction.

5.1 The electron Hamiltonian in second quantization

The non-interaction of the last chapter allowed us, to consider single particle problems.
If we are to include interactions between electrons, this is no longer valid, and we need
to pass to second quantization.
We assume to have found the solutions {Ψα} with quantum numbers {α} for the

single electron Hamiltonian

H = −~
2

2m ∆ +
∑
R∈L

ṽ(r −R)

from section 4.1. In fact, it is enough to choose a Hilbert basis {Φα} of the single
particle Hilbert space, such that the Wannier functions also work. At least, if their
linear span is dense in the Hilbert space.

Remark 5.1.1.
To recover the wave function representation, from which we have started in chapter
2, one uses the Slater determinant. Let Ψ(j)(rj) denote the wave function of
the j-th particle. Then the N particle wave function Ψ is

Ψ(r1, . . . , rN) = 1√
N !

det


Ψ(1)(r1) . . . Ψ(1)(rN)

... . . . ...
Ψ(N)(r1) . . . Ψ(N)(rN)

 .

In fact, the fermionic Fock space is F =
∞⊕
j=0

∧j(H), where H is the single particle
Hamiltonian. Then the Slater determinant is just a representation of the wedge
product in L2(Rn).

To keep the notation short, we write |α〉 = Φα. Then, the occupation number represen-
tation reads:

|nα1 , nα2 , . . .〉 = |α1〉nα1 ∧ |α2〉nα2∧ ,

where |αj〉nαj = |αj〉 ∧ . . . ∧ |αj〉 with nαj -times |αj〉 and |αj〉0 = 1. However, since we
are dealing with fermions, nαj ∈ {0, 1} anyway.
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If the many electron Hamiltonian is given by

H =
Ne∑
j=1

Hj + U,

where Hj is the single electron Hamiltonian, acting on the j-th electron and U = Vee
the electron-electron interaction, the second quantized Hamiltonian reads:

H =
∑
α,β

Hαβc
†
αcβ + 1

2
∑

α,β,γ,δ

Uαβγδc
†
αc
†
βcδcγ .

One has to be careful with the ordering of the indices for fermions, because of the
anticommutativity. Indeed, the order of the indices of U does not match the order of
the creation/annihilation operators. The coefficients are given by

Hαβ = 〈α|H|β〉 and Uαβγδ = 〈α|〈β|U |γ〉|δ〉 .

5.2 Single band Hubbard model

With U = Vee = ∑
j<k

e2

‖rj−rk‖
for the electron electron, the matrix elements of the

second quantized Hamiltonian are

Hαβ =
∫
R3

Φα(r)
−~2

2m ∆ +
∑
R∈L

ṽ(r −R)
Φβ(r) dr3 ,

Uαβγδ =
∫
R3

∫
R3

Φα(r′)Φβ(r) e2

‖r − r′‖
Φγ(r)Φδ(r′) dr3 dr′3 .

If one chooses for the Φα the Bloch states, which are solutions of the single electron
Hamiltonian H, the matrix elements Hαβ are

Hn,k,σ;n′,k′,σ′ = En(k, σ)δn,n′δk,k′δσ,σ′ .

However, the interaction part is more difficult/impossible to calculate exactly. Hence,
one needs approximations by choosing appropriate models.
One such model is the Hubbard model. For the single electron Hilbert space, we

choose the Wannier functions wn,R as basis and the tight binding approximation. This
however means, that the matrix element Hαβ is no longer diagonal (except for the spin).
The second quantized Hamiltonian reads:

H =
∑

n,R;n′,R′;σ
Hn,R;n′,R′c

†
n,R,σcn′,R′,σ

+ 1
2

∑
n1,k1,σ1;...
n4,k4,σ4

Un1,k1,σ1;...;n1,k1,σ1c
†
n1,k1,σ1c

†
n2,k2,σ2cn4,k4,σ4cn3,k3,σ3 .

So far, this is an exact expression of the second quantized Hamiltonian. For the single
band Hubbard model, the approximations are:
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• Consider only the valance band contributions, i.e. drop the band index sums.

• For the one body part, consider only next neighbor contributions of magnitude
t, in agreement with the tight binding model. This means, that R′ = R+ ∆R,
where ∆R is a Bravais vector to the next neighbors:

t
∑

R,∆R;σ
c†R,σcR+∆R,σ

• The main contribution of interaction is R = R′, i.e. the electrons are as close
as possible. Because of the Pauli principle, electrons can only be at the same
lattice position (which is a quantum number in the Wannier basis), if they have
differing spins. With a parameter U for the interaction strength, the interaction
part reads:

U

2
∑
R

c†R,↑cR,↑c
†
R,↓cR,↓ .

With these assumptions, we arrive at the single band Hubbard Hamiltonian

H = t
∑

R,∆R;σ
c†R,σcR+∆R,σ + U

2
∑
R

c†R,↑cR,↑c
†
R,↓cR,↓ .

5.3 Outlook

The single band Hubbard model is an important model, but just one of many. Also,
the are other approximation methods, numerical and analytical ones. An important
example would be the Hartree–Fock method. Furthermore, the interaction between
phonons and electrons has to be investigated. . .
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