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Abstract
Probability theory is not often a core part of the mathematical education in physics,
and is usually taught along statistical physics. As such, it can happen that not
much detail is spent on the concepts of probability theory, which has its uses in
many areas of applied sciences and applied mathematics. This report tries to give a
concise and coherent introduction to the basic concepts of probability theory and
the information theoretic view of entropy. It contains only standard results and is
inspired by lectures on these topics (not publicly available). For the probability
section, any introductory book on probability theory and stochastics will do. The
second section loosely follows [CT12].
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1 Probability
1.1 Fundamental concepts
At first glance, the concept of probability needs no further introduction. Intuitively, it is
described as the likelihood of a specific event to happen. Yet, this is no precise definition.
Although bulky at first, the axiomatic construction of probability allows to derive precise
statements for random processes. That is, even randomness is not devoid of order and
structure. Before we can define probability spaces, we need to introduce some technical
concepts:

Definition 1.1.
Let Ω be a set and Σ ⊆ P(Ω) be a subset of the power set of Ω. It is called a
σ-algebra if:

i) Ω ∈ Σ,

ii) A ∈ Σ ⇒ Ω \ A ∈ Σ,

iii) Ak ∈ Ω for all k ∈ I ⊆ N, then ⋃k∈I Ak ∈ Σ.

The second technical definition we need is the following:

Definition 1.2.
Let Σ be a σ-algebra of Ω. A map p : Σ −→ [0,∞] is called measure if

i) p(∅) = 0,

ii) p is additive, i.e. for disjunct Ak ∈ Σ for k ∈ I ⊆ N it holds that

p

⋃
k∈I

Ak

 =
∑
k∈I

p(Ak) .

If p : Σ −→ [0, 1] and p(Ω) = 1, it is called a probability measure.

With these technical definitions out of the way, we may define the object of interest:

Definition 1.3.
A probability space is a tuple (Ω,Σ, p) consisting of

• a sample space Ω of all possible outcomes,

• a σ-algebra Σ, called set of events /events,

• a probability measure p : Σ −→ [0, 1].
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Remark 1.4.
Note that the result can only be an outcome. Yet, the events are more general, allowing to
ask for the probability of a combination of outcomes.

Example 1.5.
Maybe the most basic example is a fair coin toss. Here, the outcomes are either heads h
or tails t, so Ω = {h, t}. The possible events are ∅, {h}, {t}, {h, t} = Ω. The probability
measure is uniquely defined by p({h}) = p({t}) = 1/2. Note that ∅ is impossible, as p(∅) = 0.
The event {h, t} = {h} ∪ {t} = Ω has the meaning of either heads or tails as outcome, and
is guaranteed to occur, since p(Ω) = 1.

1.2 Conditional probabilities
The concept of conditional probability can be be summarized as follows: assume that
one knows that the conditions for a certain event B are already met, what is then the
probability of event A to occur. This seems very technical, so a real world example is a
good starting point to illustrate the concepts and notions better:

Example 1.6.
We consider a medical test, designed to test for a single disease. There are four possible
outcomes: The patient has the disease D, the patient does not have the disease D, the
test is positive P and the test is not positive P .
Note that the probability of the test being positive for an arbitrary person should be
different than the probability of the test being positive if the person has the disease. That
is, if the test is any good in detecting the disease, the probability for a positive result should
be higher for patients with the disease. Formally one says, that given the condition D,
what is the probability of P , and writes p(P | D).
For medical tests, there are two important parameters. The probability p(P | D), called
the sensitivity, i.e. how well does the test detect the disease. And the probability p(P | D),
called the specificity, i.e. how well does a negative result indicate absence of the disease.

Definition 1.7.
Let A,B ∈ Σ be events, then p(A ∩B) is called the joint probability. Let B be
a condition, then the conditional probability (of A under the condition B ) is
defined as

p(A | B) := p(A ∩B)
p(B) .

One may understand this definition intuitively by saying one divides out/normalizes to
the probability it takes to achieve the condition.
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Theorem 1.8 (Bayes’ theorem).
It holds that

p(A | B) = p(B | A) p(A)
p(B) .

Proof 1.9.
This follows from the definition of conditional probabilities:

p(A | B)p(B) = p(A ∩B) = p(B ∩ A) = p(B | A)p(A) .

Corollary 1.10.
Let {Aj} be a decomposition of Ω, i.e. Ai ∩ Aj = ∅ for all i 6= j and ⋃j Aj = Ω.
Then it holds that

p(B) =
∑
j

p(B | Aj)p(Aj) .

Proof 1.11.
Again, this follows from the definition of conditional probabilities and the assumptions
(allowing to use the additivity of the probability measure):

∑
j

p(B | Aj)p(Aj) =
∑
j

p(B ∩ Aj) = p

⋃
j

(B ∩ Aj)
 = p

B ∩⋃
j

Aj

 = p(B ∩ Ω)

= p(B) .

1.3 Probability distributions
Working out the details of the probability spaces can be cumbersome and rather abstract.
To calculate properties, it is desirable to translate the probability space into a model that
works with numbers, hence the definition of random variables:

Definition 1.12.
A random variable is an injective measureable function X : Ω −→ K, where K is
usually R or C. If X(Ω) is countable, it is called discrete, otherwise it is called
continuous.

Loosing the flexibility for constructions, the σ-algebra of events offered, we gain the
computational power of analysis, as we will see, to derive useful properties. To be a
translation of a probability space, the concept of probabilities has to be defined for random
variables. For discrete random variables, this is straightforward. However, the continuum
harbors some technical difficulties, preventing that there is a continuous analogue of the
probability for all random variables. Yet, with a modified concept, this can be fixed.
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Definition 1.13.
Let X : Ω −→ R be a real random variable. If X is discrete, the probability mass
function (PMF) is defined by

p : R −→ [0, 1] , p(x) ≡ p(X = x) := p({ω ∈ Ω | X(ω) = x}) .

If X is continuous, the cumulative distribution function (CDF) is defined as

F : R −→ [0, 1] , F (x) := p(X ≤ x) ≡ p({ω ∈ Ω | X(ω) ≤ x}) .

Let X be continuous. A function f : R −→ R is called probability density
function (PDF), if

p(X ∈ [a, b]) =
∫ b

a
f(x) dx .

Remark 1.14.
The PDF need not be restricted to [0, 1] as the probability is given by the integration. In
fact, using measure theory to construct the integral (Lebesgue integral), the function f
may be infinite on a null set, so in particular on finitely many points.

While the CDF exists for all continuous random variable and are more well behaved, it
can happen that there is no PDF. Generally speaking however, the existence of PDFs
usually is desirable. Not only is the concept closer to the PMF and thus to the probability
of outcomes, but it also simplifies calculations. As this is only a short introduction, we will
take the liberty and show the statements only for the cases where there is a PDF (which
is the case for most applications).

Corollary 1.15.
Let X : Ω −→ R be a continuous real random variable with PDF f and CDF F .
Then it holds that

F (x) =
∫ x

−∞
f(y) dy .

If the PDF f is continuous, it holds that f(x) = d
dx
F (x).

Proof 1.16.
For the first equality, we use the definition of the PDF and calculate:

F (x) = p(X ≤ x) = p(X ∈ [−∞, x]) =
∫ x

−∞
f(y) dy .

Assuming continuity of the PDF f , the second clam is the result of the fundamental
theorem of calculus.
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Lemma 1.17.
Let X : Ω −→ R be a continuous random variable with CDF FX(x) and PDF fX(x).
Let g : R −→ R be an invertible function. Then the random variable Y = g(X) has
the CDF

FY (y) =
{
FX(g−1(y)) if g is mon. increasing
1− FX(g−1(y)) if g is mon. decreasing

If g is also differentiable (i.e. it is an diffeomorphism), then Y has the PDF

fY (y) = fX(g−1(y))
|g′(g−1(y))|

Proof 1.18.
Let g be mon. increasing first, then

FY (y) ≡ p(Y ≤ y) = p(g(X) ≤ y) = p(X ≤ g−1(y)) = FX(g−1(y)) .

If g is mon. decreasing it holds that g(a) ≤ b ⇐ a ≥ g−1(b) for all a, b ∈ R. Then
we calculate:

FY (y) ≡ p(Y ≤ y) = p(g(X) ≤ y) = p(X ≥ g−1(y)) = 1− p(X < g−1(y))
= 1− p(X < g−1(y))± p(X = g−1(y))
= 1− p(X ≤ g−1(y)) + p(X = g−1(y)) = 1− p(X ≤ g−1(y)) =
= 1− FX(g−1(y)) .

Note that we used that p(X = g−1(y)) = 0. This is, since the random variable has a
PDF, such that indeed

p(X = g−1(y)) = p(X ∈ [g−1(y), g−1(y)]) =
∫ g−1(y)

g−1(y)
f(x) dx = 0 .

For the PDF, let g be mon. increasing first. We calculate:

fY (y) = d

dy
FY (y) = d

dy
FX(g−1(y)) = d

dy(x)FX(x) = 1
g′(x)

d

dx
FX(x)

= fX(x)
g′(x) = fX(g−1(y))

g′(g−1(y)) = fX(g−1(y))
|g′(g−1(y))| .

For mon. decreasing g, we obtain:

fY (y) = d

dy
FY (y) = d

dy
(1− FX(g−1(y))) = d

dy(x)(1− FX(x)) = 1
g′(x)

d

dx
(1− FX(x))

= −fX(x)
g′(x) = −fX(g−1(y))

g′(g−1(y)) = fX(g−1(y))
|g′(g−1(y))| .

Observe that for a mon. decreasing g it holds that g′ ≤ 0, such that we could trade
the minus sign for the absolute value of the denominator in the last step.
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1.4 Expected values, variance and higher moments
Assume that X : Ω −→ R is a discrete random variable with finite Ω. Assuming we repeat
the random experiment N times and assume that the probability is perfectly matched
in the results, i.e. n(ω) = N · p(ω) is the number of the outcome ω. Then, we obtain as
average the value

X = 1
N

∑
ω∈Ω

n(ω)X(ω) = 1
N

∑
ω∈Ω

Np(ω)X(ω) =
∑
ω∈Ω

p(ω)X(ω) .

This means that half of the resulting values X(ω) of the experiment will be smaller than
X and half of the values will be larger than X. This motivates the following definition:

Definition 1.19.
Let X : Ω −→ R be a random variable. The expected value E(X) is defined as
follows:

E(X) :=


∑
ω∈Ω

p(ω)X(ω) if X is discrete

∫
Ω
p(ω)X(ω) dω if X is continuous

Remark 1.20.
The notation for the expected value for continuous variables is suggestive here, to resemble
the result that is used in most calculations. In fact, a more mathematical notation would
be
∫

ΩX(ω) dp(ω) to indicate that in fact the Lebesgue integral w.r.t. the measure p(ω) is
used. For this, one needs that Ω is a Borel-σ-algebra and

∫
Ω |X(ω)| dp(ω) < ∞ [Geo07,

Satz 4.12].

Corollary 1.21.
The expected value is linear

E(αX + Y ) = αE(X) + E(Y )) ,

monotone
E(X) ≤ E(Y ) ∀X ≤ Y ,

i.e. X(ω) ≤ Y (ω) for all ω ∈ Ω. Finally, for any constant value α it holds that the
expected value acts trivially:

E(α) = α .

Proof 1.22.
Linearity and monotony follow from basic properties of sums (limits) and (Lebesgue)
integrals, together with the fact that p(ω) ≥ 0.
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For the last property, we calculate (using that probabilities sum/integrate to one):

E(α) =
∑
ω∈Ω

p(ω)α = α
∑
ω∈Ω

p(ω) = α .

E(α) =
∫

Ω
αp(ω) dω = α

∫
Ω
p(ω) dω = α .

Proposition 1.23 (See [Geo07, Korollar 4.13] for the proof).
Let X : Ω −→ R be a continuous random variable with PDF fX(x), then the expected
value is given by

E(X) =
∫
R
fX(x)x dx .

Let g : R −→ R be an integrable function, then it holds that

E(g(X)) =
∫
R
fX(x)g(x) dx .

For a discrete random variable, we can also “untie” the expected value from the probability
space. This may be the case if the model one is interested in is constructed in terms of a
random variable and a PMF, without concrete realization of a probability space.

Corollary 1.24.
Let X : Ω −→ R be a discrete random variable, then it holds that

E(X) =
∑

x∈X(Ω)
p(x)x .

Let g : R −→ R be a function, then it holds that

E(g(X)) =
∑

x∈X(Ω)
p(x)g(x) .

Proof 1.25.
Recall that p(x) is defined as follows:

p(x) = p(X(ω) = x) = p({ω ∈ Ω | X(ω) = x}) = p(ω) .

Thus:
E(X) =

∑
ω∈Ω

p(ω)X(ω) =
∑

x∈X(Ω)
p(x)x .

For the second claim, we start again with the basic definition:

E(g(X)) =
∑
ω∈Ω

p(ω)g(X(ω)) =
∑

x∈X(Ω)
p(x)g(x) .
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Remark 1.26.
Form a physical point of view, one can attach an intuitive meaning to the expected value.
Consider the PMF/PDF as distribution of masses (mass point/continuous body). Then the
formulas (see proposition 1.23 and corollary 1.24) for the expected values are precisely the
formulas for the center of mass. Furthermore, the transformation behavior makes perfect
sense. Changing the position of the masses (i.e. x y g(x)), but keeping the masses the
same (i.e. p(x) y p(x)) results in the center of mass for the masses shifted to the position
g(x) (i.e. asking for E(g(X))). So the expected value may be regarded as the “center of
probability”.

As first approach to understand a probability distribution, the expected value is a good
tool. However, following the analogy to physics, knowing the center of mass does not tell,
how far the masses extend, i.e. how much the probability distribution spreads out. See
for example figure 1, where both PDFs have the same expected value, but have different
widths.

X

p(X)

E(X) = 0 and V (X) = 1
4

E(X) = 0 and V (X) = 1

Figure 1: Two normal distributions with the same expected value but with different variances.

In physics, there is a natural quantity to measure the spreading of a mass configuration,
the moment of inertia. It measures how much torque (the pendent to force for angular
movement) is needed to create angular movement. The further the masses extend outward
form the center of rotation and the larger the mass is, the larger is the moment of inertia.
A mass point contributes to the moment of inertia with it mass m and its distance to the
center of rotation r by mr2. Again, we interpret the PMF as mass points and the PDF as
mass density. As center of rotation (as is the case in a physical system without external
forces) we take the center of probability, i.e. the expected value E(X). The distance to
this center is given by X −E(X). For the “moment of probability-inertia” we obtain
(formulas for momenta of inertia):

IX =
∑

x∈X(Ω)
p(x)(x− E(X))2 = E((X − E(X))2) .
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And for a continuous random variable:

IX =
∫
R
fX(x)(x− E(X))2 dx = E((X − E(X))2) .

This is the motivation for the following definition:

Definition 1.27.
Let X : Ω −→ R be a random variable. The variance is defined as

V (X) := E((X − E(X))2) .

The standard deviation of X is defined as σX =
√
V (X), thus σ2

X is an other
common notation for the variance.

Both the variance and the standard deviation measure how far the probability distribution
spreads outward from the expected value. Yet, there is a subtle difference between the
two, justifying the additional name for the square root of the variance. The variance is
motivated by the moment of inertia. However, this introduces the square of the random
variable, so the variance has and probability distribution have different dimensions. For
better comparability, it is useful to “undo” the square by taking the square root of the
variance.

Proposition 1.28.
The variance has the following properties:

i) V (X) = E(X2)− E(X)2

ii) V (X) = E((X − a)2)− (E(X)− a)2 ∀ a ∈ R

iii) V (aX + b) = a2V (X)

iv) V (X) ≥ 0 and V (X) = 0 ⇒ X = E(X) = const. ∈ R.

Proof 1.29.
We use the properties of the expected value from corollary 1.21 in the following
calculations. For the first property, we calculate:

E(X2)− E(X)2 = E(X2)− 2E(X)E(X) + E(X)2 = E(X2 − 2XE(X) + E(X)2)
= E((X − E(X))2) = V (X) .

For the second property, we use the first property:

E((X − a)2)− (E(X)− a)2 = E(X2 − 2aX + a2)− E(X)2 − a2 + 2aE(X)
= E(X2)− 2aE(X) + a2 − E(X)2 − a2 + 2aE(X)
= E(X2)− E(X)2 = V (X) .

The third property follows from:

V (aX + b) = E((aX + b)2)− E(aX − b)2
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= E(a2X2 + b2 − 2abX)− (aE(X)− b)2

= a2E(X2) + b2 − 2abE(X)− a2E(X)2 − b2 + 2abE(X)
= a2E(X2)− a2E(X)2 = a2(E(X2)− E(X)2)
= a2V (X)

Using as random variable Y = 0, it holds that (X − E(X))2 ≥ Y and thus it follows
from the monotony of the expected value that

V (X) = E((X − E(X))2) ≥ E(Y ) = 0 .

Now, let V (X) = 0. It holds that (X − E(X))2 ≥ 0 and (X − E(X))2 = 0 only if
X = E(X). In the discrete case, we calculate:

0 = V (X) = E((X−E(X))2) =
∑

x∈X(Ω)
p(x)(x−E(X))2 ⇒ p(x) = 0 ∀x 6= E(X) .

Since ∑x∈X(Ω) p(x) = 1 it follows that p(E(X)) = 1 and thus X(ω) = E(X) for all
ω ∈ Ω, i.e. X = E(X). In the continuous case, we calculate:

0 = V (X) = E((X − E(X))2) =
∫

Ω
(X(ω)− E(X))2 dp(ω) .

Again, since the probability measure is positive, X(ω) = E(X) for (almost) all ω ∈ Ω
(note that values of null sets are not specified and do not enter probability).

As a measure for the spreading of the probability distribution, the variance gives so far a
qualitative idea of how unlikely outliers are, i.e. events that are far away from the expected
value. Yet, one can quantify this notion and construct an upper bound for outliers. Before
we can proof this upper bound, we need the following lemma:

Lemma 1.30.
Let χA : R −→ {0, 1} be the indicator function of A ⊆ R, i.e. χA(x) = 1 if x ∈ A
else if χA(x) = 0. For a random variable X : Ω −→ R with PMF/PDF it holds that:

p(A) ≡ p(x ∈ A) = E(χA(X)) .

Proof 1.31.
For a discrete random variable, we calculate:

E(χA(X)) =
∑

x∈X(Ω)
p(x)χA(x) =

∑
x∈X(Ω)∩A

p(x) = p(x ∈ A) .

For a continuous random variable with PDF fX we calculate:

E(χA(X)) =
∫
R
fX(x)χA(x) dx =

∫
A
fX(x) dx = p(x ∈ A) .
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Proposition 1.32.
Let X : Ω −→ R be a random variable. Then, the probability of X to deviate from
E(X) by r is bounded form above by

p(|x− E(X)| ≥ r) ≤ V (X)
r2 .

Proof 1.33.
Define function g, h : R −→ R by

g(x) :=
{

1 |x− E(X)| ≥ r
0 else and h(x) := 1

r2 (x− E(X))2 .

Then for all x ∈ R it holds that g(x) ≤ h(x), so g(X) ≤ h(X). By the monotony
of the expected value, this means that E(g(X)) ≤ E(h(X)). Observe that g is the
indicator function for the set {x ∈ R | |x− E(X)| ≥ r}. Thus, with lemma 1.30 we
obtain:

V (X)
r2 = 1

r2E((X − E(X))2) = E( 1
r2 (X − E(X))2) = E(h(X))

≥ E(g(x)) = p(|x− E(X)| ≥ r) .

Recall that the variance is defined as the expected value of the square of the difference
between the random variable and the expected value. Such terms are used frequently,
hence they get a term for quick reference:

Definition 1.34.
Let X : Ω −→ R be a random variable. The n-th moment of X is E(Xn). The
n-th central moment is E((X − E(X))n).

In this terminology, the expected value is the first moment and the variance is the second
central moment.

1.5 Stochastic independence and collections of random variables
Recall the definition of conditional probabilities (definition 1.7), which reads

p(A | B) = p(A ∩B)
p(B) .

Now, following the terminology, one might wonder what happens if B is no condition for
A at all. That is, assume that the conditional probability does not change the probability
p(A | B) = p(A). In this case, we are tempted to call A and B independent:

p(A | B) = p(A) ⇔ p(A) = p(A | B) = p(A ∩B)
p(B) ⇔ p(A ∩B) = p(A) · p(B) .
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Definition 1.35.
Two events A,B ∈ Σ are called stochastically independent if

p(A ∩B) = p(A) · p(B) .

This formula is familiar. Consider repeating an identical random process twice, which
implies that there is no influence between the results. Then the probability that A and
then B occurs is given by p(A) · p(B). However, stochastic independence does not mean
that there is no causality between two events. Consider the following example:

Example 1.36.
Consider rolling a die twice and define the following events:

A: The sum of both results is odd.

B: The first roll yields an even number.

Here, the question if the sum is odd (A) depends on a causal level on the first roll (B).
Yet, evaluating all possible results yields

p(A) = p(B) = 1
2 ⇒ p(A ∩B) = 1

4 = p(A) · p(B) ,

so A and B are stochastically independent. This is no contradiction, as causality (here
temporal causality of allowed outcomes) and the interdependence of probability are not the
same concepts, though they may coincide in some cases. So stochastic independence may
best be understood as follows. The occurrence of one event, does not change the likelihood
of the second event, but may change the allowed outcomes such that the conditions for the
second event are met.

Definition 1.37.
Let {Ai}i∈I be a family of events Ai ∈ Σ. The family is called stochastically
independent if

p

⋂
i∈I′

Ai

 =
∏
i∈I′

p(Ai) ∀ I ′ ⊆ I .

At first, this definition seems redundant. However, stochastic independence between all
events of a family does not imply stochastic independence of the whole family, and vice
versa.

Example 1.38.
Consider the random generation of a binary tuple ~a = (a1, a2, a3) ∈ {0, 1}3. Let s denote
the number of ones, i.e. s = a1 + a2 + a3, and define the following probabilities for these
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cases:

p(~a) :=


5/16 s = 0
0 s = 1
3/16 s = 2
1/8 s = 3

Let Aj be the event, that the j-th component is one, i.e.

Aj := {~a ∈ {0, 1}3 | aj = 1} .

Direct calculation shows that

p(A1) = p(A2) = p(A3) = 1
2 .

Observe that

p(A1 ∩A2 ∩A3) = p({(1, 1, 1)}) = 1
8 = p(A1) · p(A2) · p(A3) .

However,

p(A1 ∩A2) = p({(1, 1, 0)} ∪ {(1, 1, 1)}) = p({(1, 1, 0)}) + p({(1, 1, 1)}) = 3
16 + 1

8 = 5
16

6= 1
4 = p(A1) · p(A2) .

We have introduced the concept of stochastic independence on the fundamental level of
probability spaces. However, as the previous sections have illustrated, we are particularly
interested in random variables for calculations.

Definition 1.39 (collection of discrete random variables).
Let X1, . . . , Xn be a collection of discrete random variables.
The joint PMF is defined as

p(x1, . . . , xn) := p(X1 = x1, . . . , Xn = xn) .

The marginal PMF for Xk is defined as

pXk(xk) :=
∑

x1,...,x̂k,...,xn

p(x1, . . . , xn) ,

where the hat denotes omission of that variable.

The definition of the joint PMF is straightforward. It is just the probability, that Xi yields
xi for all i = 1, . . . n. The idea of the marginal PMF is, to obtain the probability for the
single random variable left, by summing out the other random variables. For continuous
random variables, the definition of the joint CDF follows the same reasoning. Also, the
marginal PDF is defined by integrating out the remaining random variables from the joint
PDF. However, the definition of the joint PDF is again not analogue to the PMF.
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Definition 1.40 (collection of continuous random variables).
Let X1, . . . , Xn be a collection of continuous random variables.
The joint CDF is defined as

FX1,...,Xn(x1, . . . , xn) := P (X1 ≤ x1, . . . , Xn ≤ xn) .

The joint PDF (if it exists) is defined as

fX1,...,Xn(x1, . . . , xn) := ∂n

∂x1 . . . ∂xn
FX1,...,Xn(x1, . . . , xn) .

The marginal CDF for Xk is defined as

FXk(xk) = FX1,...,Xn(∞, . . . , xk, . . . ,∞) .

The marginal PDF for Xk is defined as

fXk(xk) :=
∫
Rn−1

fX1,...,Xn(x1, . . . , xn) dx1 . . . dx̂k . . . dxn ,

where the hat denotes omission of that variable.

The definition of the joint PDF is a direct generalization of the relation between PDF and
CDF, which is d

dx
F (x) = f(x) (see corollary 1.15). Note, that again d

dx
FXk(xk) = fXk(xk).

In fact, if the joint PDF exists (and is well defined, i.e. does not depend on the order of
differentiation), it holds that

FX1,...,Xn(x1, . . . , xn) =
∫ x1

−∞
. . .
∫ xn

−∞

∂n

∂y1 . . . ∂yn
FX1,...,Xn(y1, . . . , yn) dy1 . . . dyn

=
∫ x1

−∞
. . .
∫ xn

−∞
fX1,...,Xn(y1, . . . , yn) dy1 . . . dyn .

Definition 1.41 (stochastic independence of discrete random variables).
LetX1, . . . , Xn be a collection of discrete random variables. They are called stochas-
tically independent if

p(x1, . . . , xn) =
n∏
i=1

pXi(xi) .

Remark 1.42.
Unlike the stochastic independence of events, it is enough for the stochastic independence
of random variables, to demand the factoring of the whole collection, since then any
sub-collection factors, too.

For the definition of stochastic independence, the marginal PMFs are used. However, for
stochastic independence, it is enough to find any probability functions that factor out the
individual random variables, as the following lemma shows.
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Lemma 1.43.
Let X1, . . . , Xn be a collection of random variables and pi : Xi(Ωi) −→ [0, 1] be
functions that satisfy the probability axioms, i.e. ∑xi pi(xi) = 1. If

p(x1, . . . , xn) =
n∏
i=1

pi(xi) ,

then X1, . . . , Xn are stochastically independent and the pi are the marginal probabili-
ties pi ≡ pXi.

Proof 1.44.
We just need to apply the definition of the marginal PMF to find

pXi(xi) =
∑

x1,...,x̂k,...,xn

p(x1, . . . , xn) =
∑

x1,...,x̂k,...,xn

n∏
i=1

pi(xi)

= pk(xk)
n∏

i=1, 6=k

∑
xi

p1(xi) = pk(xk) .

But then, by the assumption of the lemma

p(x1, . . . , xn) =
n∏
i=1

pi(xi) =
n∏
i=1

pXi(xi) ,

which is the definition of stochastic independence.

Definition 1.45.
Let X1, . . . , Xn be a collection of continuous random variables. They are called
stochastically independent if

FX1,...,Xn(x1, . . . , xn) =
n∏
i=1

FXi(xi) .

Again, the condition that the individual factors have to be the marginal CDFs can be
lifted.

Lemma 1.46.
Let X1, . . . , Xn be a collection of continuous random variables and let Fi : R −→ R
be integrable functions such that Fi(∞) = 1. If

FX1,...,Xn(x1, . . . , xn) =
n∏
i=1

Fi(xi) ,

then Fi(xi) = FXi(xi) and thus X1, . . . , Xn are stochastically independent.
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Proof 1.47.
FXk(xk) = FX1,...,Xn(∞, . . . , xk, . . . , Xk) = Fk(xk)

n∏
i=16=k

Fi(∞) = Fk(Xk) .

Furthermore, the condition for stochastic independence carries over to PDFs.

Lemma 1.48.
Let X1, . . . , Xn be a collection of continuous random variables with joint PDF
fX1,...,Xn(x1, . . . , xn). If and only if there are functions fi : R −→ R that are integrable
with

∫
R fi(x) dx = 1, such that

fX1,...,Xn(x1, . . . , xn) =
n∏
i=1

fi(xi) .

In this case fXk(xk) = fk(xk).

Proof 1.49.
First, we show that if the PDF factors through the random variables, the factors are
the marginal PDFs:

fXk(xk) =
∫
Rn−1

fX1,...,Xn(x1, . . . , xn) dx1 . . . dx̂k . . . dxn

=
∫
Rn−1

n∏
i=1

fi(xi) dx1 . . . dx̂k . . . dxn

= fk(xk)
n∏

i=1, 6=k

∫
R
fi(x) dx = fk(xk)

Now, it is enough to show that fX1,...,Xn(x1, . . . , xn) = ∏n
i=1 fi(xi) is equivalent

to X1, . . . , Xn being stochastically independent. For this, recall that fXk(xk) =
d
dxk
FXk(xk) and thus vice versa FXk(xk) =

∫ xk
−∞ fXk(x) dx. Assume now thatX1, . . . , Xn

are stochastically independent, then:

fX1,...,Xn(x1, . . . , xn) = ∂n

∂x1 . . . ∂xn
FX1,...,Xn(x1, . . . , xn)

= ∂n

∂x1 . . . ∂xn

n∏
i=1

FXi(xi) =
n∏
i=1

∂xiFXi(xi)

=
n∏
i=1

fXi(xi) .

For the opposite direction, assume that fX1,...,Xn(x1, . . . , xn) = ∏n
i=1 fXi(xi), then

FX1,...,Xn(x1, . . . , xn) =
∫ x1

−∞
. . .
∫ xn

−∞
fX1,...,Xn(y1, . . . , yn) dy1 . . . dyn

=
∫ x1

−∞
. . .
∫ xn

−∞

n∏
i=1

fXi(yi) dy1 . . . dyn
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=
n∏
i=1

∫ xi

−∞
fXi(yi) dyi =

n∏
i=1

FXi(xi) ,

which is the definition for X1, . . . , Xn to be stochastically independent.

Lemma 1.50.
Let X, Y : Ω −→ R be two stochastical independent random variables that are both
discrete/continuous and have PMFs/PDFs. Then

E(XY ) = E(X)E(Y ) .

Proof 1.51.
For the discrete case, we calculate

E(XY ) =
∑
x,y

p(x, y)xy =
∑
x,y

(pX(x)x)(pY (y)y) =
(∑

x

pX(x)x
)(∑

y

pY (y)y
)

= E(X)E(Y ) .

For the continuous case, we use the existence of the PDF to obtain:

E(XY ) =
∫
R2
fX,Y (x, y)xy dxdy =

∫
R2
fX(x)xfY (y)y dxdy

=
∫
R
fX(x)x dx

∫
R
fY (y)y dy = E(X)E(Y ) .

Note that we used that both X and Y are discrete/continuous to avoid mixing
integration and (possibly infinite) sums for this proof.

1.6 Covariance and correlation
Another tool to describe the relation between random variables is the correlation. For this,
we generalize the notion of variance:

Definition 1.52.
Let X, Y be real random variables. The covariance is defined as

Cov(X, Y ) := E((X − E(X))(Y − E(Y ))) .

Note that the covariance reduces to the variance for a single random variable:

Cov(X,X) = E((X − E(X))(X − E(X))) = E((X − E(X))2) = V (X) .
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Lemma 1.53.
Let X, Y be random variables, both discrete/continuous, with PMFs/PDFs. If X
and Y are stochastically independent, then Cov(X, Y ) = 0.

Proof 1.54.
The assumptions for X and Y are the same as in lemma 1.50, such that it applies
here. Then:

Cov(X, Y ) = E((X − E(X))(Y − E(X))) = E(X − E(X))E(Y − E(Y ))
= (E(X)− E(X))(E(Y )− E(Y )) = 0

Remark 1.55.
The opposite direction does not hold. Zero covariance does not imply stochastic indepen-
dence. However, as is the case for all negations of implications, a non-zero covariance
implies stochastic dependence.

The covariance is not normalized, such that the particular values do not tell on their own,
how much the random variables depend upon each other.

Definition 1.56.
Let X, Y be random variables. The Pearson correlation is defined by

ρX,Y := Cov(X, Y )√
V (X)

√
V (Y )

.

For the proof that the Pearson correlation is properly normalized, we need the following
lemma:

Lemma 1.57.
It holds that V (X + Y ) = V (X) + V (Y ) + 2Cov(X, Y ).

Proof 1.58.

V (X + Y ) = E((X + Y − E(X − Y ))2) = E(([X − E(X)] + [Y − E(Y )])2)
= E((X − E(X))2) + E((Y − E(Y ))2) + 2E((X − E(X))(Y − E(Y )))
= V (X) + V (Y ) + 2Cov(X, Y ) .
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Proposition 1.59.
It holds that ρX,Y ∈ [−1, 1]. Furthermore, the following extreme value properties
hold:

(i) It holds that ρX,Y = ±1, if and only if Y = ±aX + c for any a ≥ 0 and c ∈ R.

(ii) If X and Y are stochastically independent, it follows that ρX,Y = 0.

Proof 1.60 (see [Cox97]).
First, using the properties of the variance (proposition 1.28), we have:

0 ≤ V (tX + Y ) = t2V (X) + 2tCov(X, Y ) + V (Y ) .

Note that this is a second order polynomial in t with V (tX + Y ) ≥ 0. This implies
that the discriminant has to less than or equal to zero, as V (tX + Y ) = 0 has at most
one real solution:

0 ≥ 4Cov(X, Y )2 − 4V (X)V (Y ) ⇔ Cov(X, Y )2 ≤ V (X)V (Y )

⇔ Cov(X, Y )2

V (X)V (Y ) ∈ [0, 1] ⇔ Cov(X, Y )√
V (X)

√
V (Y )

≡ ρX,Y ∈ [−1, 1] .

(i):
For property (i), let ρX,Y = ±1, then Cov(X, Y )2 = V (X)V (Y ), and thus 0 =
4Cov(X, Y )2 − 4V (X)V (Y ). But this means that the discriminant is zero, so there is
exactly one α ∈ R such that V (αX + Y ) = 0. By proposition 1.28 (iv) this means
that αX + Y = c for a constant c ∈ R. Put differently, Y = −αX + c. It remains to
check the sign of a = −α.

Cov(X, aX + c) = E((X − E(X))(aX + c− E(aX + c)))
= E(aX2 + cX − aXE(X)− cX − aXE(X)− cE(X) + aE(X)2 + cE(X))
= aE(X2) + cE(X)− aE(X)2 − cE(X)− aE(X)2 − cE(X) + aE(X)2 + cE(X)
= aE(X2)− aE(X)2 = a(E(X2)− E(X2)) = aV (X) .

Thus Cov(X, aX + c) > 0 if a > 0 and Cov(X, aX + c) < 0 if a < 0. From this, the
statement (and the opposite) direction follow.
(ii):
This is a consequence of lemma 1.53.

Remark 1.61 (Warnings).

• Stochastic independence implies that the random variables are uncorrelated. However,
uncorrelated random variables need not be stochastically independent.

• Correlation is no causality
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– Inverse causality:
When X and Y correlate, this does not tell, if Y depends on X or vice versa.

– Common causality:
There may be an effect, that causes both X and Y , hence the correlation,
although neither X causes Y nor vice versa.

– Coincidental correlation:
The correlation can be purely accidental.

• The Pearson correlation is only linear. For example, perfect quadratic correlation
Y = X2 yields zero linear correlation.

1.7 The normal distribution

Definition 1.62.
A continuous random variable X : Ω −→ R is normally distributed with mean
µ and variance σ2 if its PDF is given by

fX(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 .

In this case, one writes X ∼ N (µ, σ) for short.

-5 -4 -3 -2 -1 0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

X

p(X)

68.3%

13.6%13.6%
2.1% 2.1%

µ = 1, σ2 = 1

Figure 2: Example of a normal distribution with µ = 1 and σ2 = 1, together with the 3σ rule.

A normal distribution N (µ, σ2) with mean µ and variance σ2 has the following properties:

1. The expected value and variance are

E(X) = µ and V (X) = σ2 .

2. The higher central moments are given by

E((X − µ)n) =
{

0 n is odd
σn · (n− 1)!! n is even .
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3. The 3σ rule, which states that

n p(|x− µ| ≤ nσ)
1 68, 3%
2 95, 4%
3 99.7%

1.8 Law of large numbers and central limit theorem
Without further technicalities, the law of large numbers can be stated. In fact, the proof
is not hard, and up to a single detail the following lemma covers, can be done with the
tools we have established so far.

Lemma 1.63.
Let X, Y : Ω −→ R be two random variables. Then

V (X + Y ) = V (X) + V (Y ) .

Proof 1.64.

V (X + Y ) = E((X + Y )2)− E(X + Y )2

= E(X2 +X2 + 2XY )− E(X)2 − E(Y )2 − 2E(XY )
= E(X2) + E(Y 2) + 2E(XY )− E(X)2 − E(Y )2 − 2E(XY )
= E(X2)− E(X2) + E(Y 2)− E(Y )2

= V (X) + V (Y ) .

Theorem 1.65 (weak law of large numbers (LLN)).
Let (Xn)n∈N be a sequence of stochastically independent, identically distributed real
random variables with E(Xn) = µ and V (Xn) = σ2 for all n ∈ N. Then it holds
that

lim
n→∞

p

(∣∣∣∣∣
(

1
n

n∑
i=1

Xi

)
− µ

∣∣∣∣∣ ≥ ε

)
= 0 ∀ ε > 0 .

Proof 1.66.
Using corollary 1.21 we obtain:

E

(
1
n

n∑
i=1

Xn

)
= 1
n

n∑
i=1

E(Xi) = 1
n

n∑
i=1

µ = µ ,

With the lemma 1.63 and proposition 1.28 we obtain

V

(
1
n

n∑
i=1

Xi

)
= 1
n2

n∑
i=1

V (Xi) = 1
n2

n∑
i=1

σ2 = σ2

n
.
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Now, proposition 1.32 delivers the desired result:

p

(∣∣∣∣∣
(

1
n

n∑
i=1

Xi

)
− µ

∣∣∣∣∣ ≥ ε

)
≤
V
(

1
n

∑n
i=1Xi

)
ε2 = σ2

nε2
n−→∞−−−−−−−→ 0 .

As the name suggests, there is also a strong law of large numbers. Yet, the difference is
only the convergence behavior.

Definition 1.67.
A sequence (Xn)n∈N is said to converge in distribution to a random variable X,
i.e. Xn

D−→ X if the CDFs satisfy

lim
n→∞

FXn(x) = FX(z) ∀ x ∈ R where FX is continuous .

Convergence in distribution is essentially point wise convergence of the CDFs, yet excluding
discontinuities of the limit-CDF. So in particular, whenever the CDFs converge point wise,
the random variables converge in distribution.

Theorem 1.68 (Central limit theorem (Lindeberg-Lévi)).
Let (Xn)n∈N be a sequence of independent, identically distributed random variables
with E(Xn) = µ and V (Xn) = σ2 <∞ for all n ∈ N. Let An = 1

n

∑n
i=1Xn denote

the sequence of averages, then
√
n(An − µ) D−→ N (0, σ) .

The Lindeberg-Lévi central limit theorem (CLT) is considered as the classical CLT. There
are different versions, where some of the restrictions can be lifted to weaker conditions,
and there are generalization to higher dimensions. Yet, as with the weak law of large
numbers, this version is enough to convey the message.

Remark 1.69.
Loosely speaking, the LLN states that the average of the results from repeated identical
random experiments approaches the expected value of the distribution. The CLT states
that

√
n(An − µ), where An is again the average of the results, approaches a normal

distribution.
Strictly speaking, the results of the CLT and the LLN only apply to the limit n → ∞.
However, in practice the behavior that the average tends to stabilize at the expected value,
and that the distribution becomes a normal distribution, can be observed for finite n.

1.9 Propagation of uncertainties
Taking into account, that there are always small fluctuations in systems, even in classical
systems considered in the thermodynamic limit, the accuracy of a measurement is limited.
Hence, there is reason to believe that the measured value x is accompanied with an
uncertainty ∆x, i.e. the real value lies in [x−∆x, x + ∆x]. This is denoted as x±∆x.
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However, then the question arises, how these uncertainties behave under a function. That
is, let x1, . . . , xn be measurements with uncertainties ∆x1, . . . ,∆xn and f : Rn −→ R a
differentiable function, what is the uncertainty ∆f? In fact, there exist many manuals
that contain a handy formula for ∆f :

∆f =
√√√√ n∑
i=1

(∂if(~x) ·∆xi)2 . (1)

In this subsection, we want to give a derivation of this formula, that is floating around in
many manuals.

From a statistical point of view, we may regard the result of a measurement as random
variable, and the uncertainty as standard deviation. From this point of view, the expected
value can be regarded as the true result, and the random variable arises because of the
limited precision of measurements. While the probability distribution is not important,
knowledge of the expected value is required. In practice, one conducts the experiment
many times. Justified by the LLN and CLT, one considers the average of the results as
expected value, and obtains the standard derivation by calculating the variance of the
results (usually assuming equal distribution).

So, letX1, . . . , Xn be random variables with expected values µ1, . . . , µn. Let f : Rn −→ R
be a differentiable function. For short, we define the vectors

~X = (X1, . . . , Xn) and ~µ = (µ1, . . . , µn) .

Then the first order Taylor approximation around ~µ reads:

f( ~X) ≈ f(~µ) +∇f(~µ) · ( ~X − ~µ) = f(~µ) +
n∑
i=1

∂if(~µ)(Xi − µi) .

Now, we can approximate the expected value for f :

E(f( ~X)) ≈ E

(
f(~µ) +

n∑
i=1

∂if(~µ)(Xi − µi)
)

= f(~µ) +
n∑
i=1

∂if(~µ)E(Xi − µi)︸ ︷︷ ︸
=0

= f(~µ) .

Thus, the expected value of the function is approximately the function of the expected
value. For the uncertainty ∆f , we calculate the variance/standard deviation:

V (f( ~X)) ≈ V

(
f(~µ) +

n∑
i=1

∂if(~µ)(Xi − µi)
)

= E

(f(~µ) +
n∑
i=1

∂if(~µ)(Xi − µi)− E(f( ~X))
)2


≈ E

(f(~µ) +
n∑
i=1

∂if(~µ)(Xi − µi)− f(~µ)
)2


= E

( n∑
i=1

∂if(~µ)(Xi − µi)
)2
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= E

 n∑
i,j=1

(∂if(~µ)(Xi − µi))(∂jf(~µ)(Xj − µj))


=
n∑

i,j=1
∂if(~µ) · ∂jf(~µ) · E ((Xi − µi)(Xj − µj))

=
n∑

i,j=1
Cov(Xi, Xj) · ∂if(~µ) · ∂jf(~µ) .

The next assumption is, that the random variables Xi are all uncorrelated, i.e. the
covariance Cov(Xi, Xj) vanishes for i 6= j:

V (f( ~X)) ≈
n∑
i=1

(∂if(~µ))2V (Xi) =
n∑
i=1

(∂if(~µ))2σ2
Xi

⇒ σf( ~X) =
√
V (f( ~X)) ≈

√√√√ n∑
i=1

(∂if(~µ) · σXi)2 .

Now, applying the interpretation, where µi ≡ xi is the result of the measurement and
σXi ≡ ∆xi is the uncertainty, (1) follows.

Remark 1.70 (Warnings).
Along the derivation of (1), we made some assumptions, that limit the applicability of the
formula (which often is not mentioned):

• We used the first order Taylor approximation, which is only a good approximation, if
Xi−µi is small. This means that the variance/square of uncertainty V (Xi) ≡ (∆xi)2

has to be small for the formula to be a good approximation of the propagated
uncertainty. The more so, the more non-linear the function is.

• The random variables/measurements Xi ≡ xi have to be uncorrelated. Otherwise,
the expression with non-zero covariance has to be used.

2 Information entropy
2.1 Axiomatic derivation of the information entropy
Consider a finite discrete random variable X : Ω −→ R, i.e. X(Ω) = {x1, . . . , xn} with
probabilities as pi = pX(xi), where pX is the PMF of X. Here, we consider the choice of
X to be also the choice of the PMF pX . A natural question is, how well a result of this
random variable (with its PMF) can be predicted. That is, we want to assign random
variables/PMFs a numerical value (i.e. its information entropy) that indicates how hard a
result can be predicted. Let ∆n denote the set of all discrete random variables X ≡ (X, pX)
with n possible outcomes. Then, we want to construct an information entropy

Hn : ∆n −→ R .
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In fact, this shall be a function that depends on the probabilities:

Hn(X) ≡ Hn(pX) = Hn(p1, . . . , pn) .

Yet, one can construct many function of random variables/PMFs that have nothing to
do with their predictability. Thus, we make the following requirements/axioms (and
explanations):

I : Hn(p1, . . . , pn) is continuous p1, . . . , pn.
Small changes in the probability configuration changes the predictability only
slightly, thus the information entropy should change only slightly.

II : Hn( 1
n
, . . . , 1

n
) is a monotonously increasing sequence in n (note that the number of

arguments also has to be increased).
If the system1 in maximally undetermined, i.e. all results are equally probable,
increasing the size n of the system makes every single result less probable, since
pi = 1

n
. Hence, the information entropy should increase, as the predictability

decreases for increasing n.

III : The position of the respective probability does not matter, i.e.

Hn(p1, . . . , pi, . . . , pj, . . . , pn) = Hn(p1, . . . , pj, . . . , pi, . . . , pn) .

Changing the positions of the pi is nothing but relabeling the results xi. Yet, this
should not change the predictability of the whole system.

IV : Let q = ∑m
i=1 qi, then it shall hold that

Hm+n(q1, . . . , qm, p1, . . . , pn) = H1+n (q, p1, . . . , pn) + q ·Hm

(
q1

q
, . . . ,

qm
q

)
.

We may reduce a system artificially, by combining several results yi with probabilities
qi to a single result y with probability q. Artificial means, that in the background
the actual system is not changed, but that we count any result yi as the result y,
i.e. ignore which yi it actually was. Then, the information entropy should account
for this. Here, we demand that the internal entropy of the yi is added with the
probability q that any of the yi has occurred as weight. For the internal probability,
we take the probabilities qi, normalized to the probability q that any results yi
occurred.

These axioms seem reasonable and innocent enough. One might think, that they allow for
many information entropies. However, they determine a unique information entropy, at
least up to a scaling factor.

1System refers to the system the random variable describes. We choose this terminology, as it is more
intuitive.
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Theorem 2.1.
If Hn satisfies the above axioms, it holds that (for an arbitrary c ∈ R+)

Hn(p1, . . . , pn) = −c
n∑
i=1

pi ln(pi) . (2)

Proof 2.2 (using ideas from [Ale05, proof of Theorem 2.1]).
First, we approximate the probabilities pi by fractions pi = mi

m
, where m = ∑n

i=1mi.
Because of the continuity, we may assume that

Hn(m1
m
, . . . , mn

m
) '

m→∞
Hn(p1, . . . , pn) .

This approximation can be understood as follows. We considerm uniformly distributed
events yi,j with probability 1

m
. Then we bunch together the events yi,1, . . . , yi,mi = xi

which thus have the probability ∑mi
j=1

1
m

= mi
m
≈ pi. Now, using (2), axiom IV and

then mi
m
≈ pi yields:

Hn(p1, . . . , pn) ≈ Hn(m1
m
, . . . , mn

m
) = Hm( 1

m
, . . . , 1

m
) +

n∑
i=1

mi∑
j=1

1
m
Hmi( 1

mi
, . . . , 1

mi
)

= Hm( 1
m
, . . . , 1

m
) +

n∑
i=1

mi

m
Hmi( 1

mi
, . . . , 1

mi
)

≈ Hm( 1
m
, . . . , 1

m
) +

n∑
i=1

piHmi( 1
mi
, . . . , 1

mi
) .

Note that the terms of the form Hm( 1
m
, . . . , 1

m
) contain m arguments 1

m
. Since the

arguments are entirely determined by the integer m in this case, we write Hm for
short:

⇒ Hn(m1
m
, . . . , mn

m
) = Hm +

n∑
i=1

mi

m
Hmi ≈ Hm +

n∑
i=1

piHmi . (3)

From the axioms of the information entropy, we can already deduce the form of such
terms. Let for a moment mi = α, then m = ∑n

i=1mi = α · n. Hence mi
m

= α
α·n = 1

n
.

The above equation then becomes

Hn +
n∑
i=1

1
n
Hmi = Hn +Hα = Hm = Hα·n .

As function of the integer, this reads Hn +Hα = Hα·n. To find a functional expression
for this, we want to solve the following functional equation:

f(x · y) = f(x) + f(y) .

Considering g(x) = f(ex) this becomes:

g(x) + g(y) = f(ex) + f(ey) = f(ex · ey) = f(ex+y) = g(x+ y) .
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This is Cauchy’s functional equation, for which it can be shown that it only has
the solution g(x) = c · x with c ∈ R, if one requires f to be continuous. But then

f(ex) = c · x ⇒ f(x) = c · ln(x) .

Hence, terms of the form Hm are Hm = c · ln(m). Since we require Hm to be
monotonously increasing for increasing m, c has to be positive, i.e. c ∈ R+. Returning
to (3), we find:

Hn(p1, . . . , pn) ≈ Hn(m1
m
, . . . , mn

m
) ≈ Hm +

n∑
i=1

piHmi = c ln(m) +
n∑
i=1

pi · c · ln(mi)

− c
(

n∑
i=1

pi ln(mi)− ln(m)
)

= −c
(

n∑
i=1

pi ln(mi)− ln(m)
m∑
i=1

pi

)

= −c
(

n∑
i=1

pi ln(mi)−
m∑
i=1

pi ln(m)
)

= −c
n∑
i=1

pi(ln(mi)− ln(m))

= −c
n∑
i=1

ln(mi
m

) ≈ −c
n∑
i=1

pi ln(pi) .

Based on this theorem, one makes the following definition:

Definition 2.3.
Let X : Ω −→ R be a discrete random variable with PMF p. The information
entropyn is defined as

H(X) := −c
∑

x∈X(Ω)
p(x) ln(p(x)) ,

for any c ∈ R+.

2.2 Elementary properties of the information entropy
First, we may address the unspecified constant c. It is nothing but a scaling factor
for the information entropy, and can be regarded as choice of units for the information
entropy. For example, in thermodynamics one chooses the Boltzmann constant c = kB,
that relates energy to temperature (a statistical property), since [kB] = Energy

Temperature . Note
that logarithms with different bases are related to each other as follows:

loga(•) = loga(b) logb(•) .

Thus, choosing c appropriately, one can change the basis of the logarithm. A common
choice in information theory is

H(X) = −
∑

x∈X(Ω)
p(x) log2(p(x)) ,

which is an entropy in the units of bits. Other direct observations are:
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• H(X) = E(− ln(p(X))), by definition of the expected value.

• H(X) ≥ 0, since p(x) ≤ 1 for all x ∈ X(Ω)

In the explanation of axiom II, we called a system maximally undetermined if the results
are uniformly distributed for a finite discrete random variable. In fact, this is a result that
follows from the information entropy:

Theorem 2.4.
The information entropy H(p1, . . . , pn) has its global maximum at (p1, . . . , pn) =
( 1
n
, . . . , 1

n
).

Proof 2.5 (Here we use the argument from [Exc20]2).
The probabilities are restricted to the set P := {~p ∈ Rn | ∑n

i=1 pi = 1}, which is
compact. Thus, the function H(p1, . . . , pn) has a global maximum on P . Now, assume
without loss of generality that pi < pj for i 6= j. Then there is an ε > 0 such that
pi + ε < pj − ε. We calculate (to keep the notation short, we choose c = 1. This does
not change the argument, since c > 0 anyway):

H (p1, . . . , pi + ε, . . . , pj − ε, . . . , pn)−H (p1, . . . , pn)
= − (pi + ε) ln (pi + ε)− (pj − ε) ln (pj − ε) + pi ln (pi) + pj ln (pj)
= −pi ln

(
pi+ε
pi

)
− ε ln (pi + ε)− pj ln

(
pj−ε
pj

)
+ ε ln (pj − ε)

= −pi ln
(
1 + ε

pi

)
− pj ln

(
1− ε

pj

)
− ε

(
ln
(
pi
(
1 + ε

pi

))
− ln

(
pj
(
1− ε

pj

)))
= −pi ln

(
1 + ε

pi

)
− pj ln

(
1− ε

pj

)
− ε

(
ln (pi) + ln

(
1 + ε

pi

)
− ln (pj)− ln

(
1− ε

pj

))

Next, we recall that ln(1 + x) = ∑n
k=0

(−1)k−1

k
xk = x+O(x2). Thus,

H (p1, . . . , pi + ε, . . . , pj − ε, . . . , pn)−H (p1, . . . , pn)
= −pi εpi + pj

ε
pj
− ε

(
ln(pi) + ε

pi
− ln(pj) + ε

pj

)
+O(ε2)

= −ε− ε ln(pi) + ε+ ε ln(pj) +O(ε2) = ε ln
(
pj
pi

)
+O(ε2) .

Since pi < pj, this difference is positive for sufficiently small ε. However, then the
entropy is larger for pi + ε and pj − ε, as long as pi < pj . Fixing all but pi and pj , we
obtain the maximum if pi = pj . Since we can repeat this argument for all pi, it follows
that the entropy is maximal if p1 = . . . = pn, which implies that pi = 1

n
for all i.

2There are also proofs, using Lagrange multipliers to find a possible candidate for a local maximum.
However, to find a sufficient condition becomes rather convoluted.
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Lemma 2.6 (Boltzmann entropy).
In case of a uniform distributed random variable X, i.e. pi = 1

n(X) , where n(X) is
the number of results, the information entropy reduces to

Hn(X) = c ln(n(X)) .

Proof 2.7.

H(X) = −c
n(X)∑
i=1

1
n(X) ln

(
1

n(X)

)
= −c ln

(
1

n(X)

)
= c ln(n(X)) .

The name Boltzmann entropy may be a stretch of terminology. Yet, choosing c = kB and
denoting n(X) = Ω, we obtain the Boltzmann entropy S = kB ln(Ω).

2.3 Joint and conditional entropies
In the section on probabilities, we have met joint and conditional probabilities for random
variables. These concepts can be applied to the information entropy.

Definition 2.8.
Let X : ΩX −→ R and Y : ΩY −→ R be discrete random variables, and let p(x, y)
be the joint PMF. The joint information entropy is defined as

H(X, Y ) := −c
∑

x∈X(ΩX)
y∈Y (ΩY )

p(x, y) ln(p(x, y)) .

As conditional information entropy with single condition, we define:

H(Y | X = x) := −c
∑

y∈Y (ΩY )
p(y | x) ln(p(y | x)) .

As conditional information entropy H(Y | X), where X can take any of its
values, we define:

H(Y | X) :=
∑

x∈X(ΩX)
p(x)H(Y | X = x) .

Note that the conditional information entropy H(Y | X) is the superposition of the
conditional information entropy H(Y | X), weighted by the probability p(x) that this
condition X = x is met.

Corollary 2.9.
It holds that

H(Y | X) = −c
∑

x∈X(ΩX)
y∈Y (ΩY )

p(x, y) ln(p(y | x)) .
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Proof 2.10.
This follows from the definition of conditional probabilities (definition 1.7)

H(Y | X) =
∑

x∈X(ΩX)
p(x)H(Y | X = x)

= −c
∑

x∈X(ΩX)
p(x)

∑
y∈Y (ΩY )

p(y | x) ln(p(y | x))

= −c
∑

x∈X(ΩX)
y∈Y (ΩY )

p(x)p(y | x) ln(p(y | x))

= −c
∑

x∈X(ΩX)
y∈Y (ΩY )

p(x, y) ln(p(y | x)) .

Lemma 2.11.
It holds that

H(X, Y ) = H(X) +H(Y | X) .

Proof 2.12.
This is a straightforward calculation, using corollary 2.9, the definition of conditional
probabilities and the definition of marginal PMFs:

H(X, Y ) = −c
∑
x,y

p(x, y) ln(p(x, y)) = −c
∑
x,y

p(x, y) ln(p(y | x)p(x))

= −c
∑
x,y

p(x, y) (ln(p(y | x)) + ln(p(x)))

= −c
∑
x,y

p(x, y) ln(p(x))− c
∑
x,y

p(x, y) ln(p(y | x))

= −c
∑
x

(∑
y

p(x, y)
)

ln(p(x)) +H(Y | X)

= −c
∑
x

p(x) ln(x) +H(Y | X) = H(x) +H(Y | X) .
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