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Abstract
The language of (modern) physics is mathematics. Following the analogy of languages,
physicists use some kind of dialect of mathematics. Often skipping rigor, even when
there is a proper mathematical theory in the background. On the other hand,
this “dialect” offers some remarkable tricks to recall and derive equations. This
report focuses on some of the more prominent examples, intended for beginning
undergraduate students.
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1 Differentiation and Fractions

A function f : R −→ R is called differentiable in x0 ∈ R, if the limit

lim
x→x0

f(x)− fx0

x− x0

exists. In this case, one writes f ′(x0) for the limit. Varying the point x0, one obtains a
function f ′ : R −→ R, x 7−→ f ′(x). This function is called derivative. Among others,
the following notations are common, not only in physics, to denote the derivative:

f ′(x) ≡ d

dx
f(x) ≡ df(x)

dx
≡ ∂f(x)

∂x
≡ ∂xf(x) ≡ Dxf .

Note, that some of these notations have different meanings in higher dimensions, but
coincide in one dimension.

1.1 The differential and “fractions”

Historically, and still used that way in experimental physics lectures, one understands df
as infinitesimal difference of f . In that sense, the notation df

dx
resembles the idea of the

formal definition
df

dx
= lim

x→x0

f(x)− f(x0)
x− x0

.

Remark 1.1.
In fact, there exist approaches to make infinitesimals rigorous, e.g. non standard
analysis. Though calculus becomes reasonable simple in these approaches, having a
rigorous mathematical theory requires constructions, that are far from simple, espe-
cially for first semester students. Furthermore, more advanced topics of mathematics
rely on the standard epsilon-delta approach, with only sparse to no literature for
the non standard analysis approach. For that reason, it is not advisable, to use
infinitesimals for more than a vague intuition. So we continue by giving df a rigorous
definition:.

Definition 1.2.
Let f : R→ R be a continuously differentiable function. Then, the differential df
is defined as

df(x) = f ′(x) dx

Now, it is not a good habit, to define objects on yet to be defined objects. However, the
underlying concepts would require more work. Formally df is a differential one-form
and (dx)p is the basis for the cotangent space T ∗pR ∼= R, defining a frame dx on the
cotangent bundle T ∗R. Explaining the details would lead us far astray, so the reader can
consider dx as the basis of a one dimensional vector space. So the vector df(x) consists of
the coefficient f ′(x) and the basis vector dx. Accordingly, it holds that

df(x) + dg(x) = f ′(x) dx+ g′(x) dx = (f ′(x) + g′(x)) dx .
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The resemblance to integration
∫
f(x) dx is no coincidence. In fact, differential forms are

the natural integrands (in higher dimensions, on manifolds etc.).
Back to the “fractions”. While it may be admissible as notation, there is no such thing

as 1
dx
. The problems might not arise in one dimension, as there is a canonical embedding

e1 7→ 1 of the vector space V = R into the field F = R. However differential forms are
defined for arbitrary dimensions:

df(~x) =
n∑
j=1

∂if(~x) dxj .

Remark 1.3.
Vector spaces do not carry a product V × V −→ V , nor is there a canonical
construction. There do exist notions of products, which promote the vector space to
an algebra or ring. However, even rings are only semi groups with respect to the
multiplicative structure. That is, there is not division operation, which would be
needed to give 1

dx
a meaning.

1.2 Natural operations for fractions - the linearity of the derivative

Owing to the linearity of the derivative, the differential is also linear. This means, that

d(f(x) + g(x) = df(x) + dg(x) and d(c · f(x)) = cdf(x) .

It comes as no surprise, especially since df
dx

is also a common notation for the derivative,
that the linearity also holds for the these fractions.

df

dx
+ dg

dx
= df + dg

dx
= d(f + g)

dx
and c · df

dx
= cdf

dx
= d(c · f)

dx
.

However, that is as far, as the natural operations of fractions carry over to the differential
fractions. The product rule leads to

d(f(x) · g(x)) = g(x) df(x) + f(x) dg(x) .

But then, this does not lead to the product of the differential fractions:

df

dx
· dg
dx
6= dfdg

dx2 .

1.3 Expanding/reducing fractions and the chain rule

Quite often, one finds expansions/reductions of fractions in derivations of the form

dg

dx
= dg

dx

df

df
= dg

df

df

dx
,

to obtain the chain rule. Although the left and right side are just the chain rule, one can
not simply expand by df , nor by any function f : R→ R. Recall:
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Theorem 1.4.
Let f : I ⊂ R −→ f(I) ⊂ R and g : J ⊂ R −→ R be functions, with f(I) ⊂ J ,
such that f is differentiable in x0 ⊂ I and g is differentiable in f(x0). Then the
composition g ◦ f : I −→ R is differentiable in x0 and it holds that

(g ◦ f)′(x0) = g′(f(c0)) · f ′(x0) .

Here another habit of the physics literature appears. Most often, physicists do not care to
write down the functional dependence explicitly. So the function f and the function values
f(x) are used interchangeably, although they are quite different objects. This “vague”
notation allows to reduce equations considerably, and keeping the general structure of
them for a wide range of cases. For that reason, not specifying dependencies does happen
in different contexts.

On the other hand, the vague notation can be quite dangerous, as it hides the assumptions
made to obtain the result, that may not hold in general. So it is often a good idea, to
write the result with dependencies. For the expansion of fractions we obtain:

dg(x)
dx

= dg

df(x)(f(x)) · df(x)
dx

.

A handy corollary for integration from theorem 1.4 is

dg(f(x)) = g′(f(x))df(x) = g′(f(x))f ′(x) dx . (1)

1.4 Inverting fractions and the rule for inverse functions

The last, though not as commonly encountered, fraction manipulation is the inversion of
fractions. The mathematical precise version, is to find the derivative of an inverse function
f−1 for a given function f . The rule for the inverse function states:

Theorem 1.5.
Let f be a bijective function, that is differentiable at x0, such that f ′(x0) 6= 0. Then
the inverse function f−1 is differentiable at f(x0) with

(f−1)′(f(x0)) = 1
f ′(x0) .

In terms of the differential notation, the theorem reads
df−1

df(x0)(f(x0)) = 1
df
dx

(x0)
.

Next, identifying x = f−1 as is usually done with y(x) and x(y), and removing the
functional dependencies in the notationl, we obtain

dx

df
= 1

df
dx

.

Guided by this notation, we observe that

f ′(f(x0)) · f ′(x0) = dx

df

df

dx
= 1 .
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Of course, this is a valid result, as can be seen from theorem 1.5.

2 Integration in one dimension

Especially in later courses on quantum mechanics, there will appear a quit odd way of
writing

∫
R f(x) dx as

∫
R dx f(x). One way of interpreting this notation, is to understand

the part
∫
R dx as map that acts on functions f(x), assigning them the value

∫
R f(x) dx.

More precisely,
∫
R dx is the regular distribution T1, defined by

T1[ϕ] :=
∫
R

1 · f(x) dx ≡
∫
R
dx f(x) .

So this notation has some connection to rigorous mathematics. In fact, the theory of
distributions is the rigorous basis of objects like delta-functions. However, it is not always
advisable to use this notation, as it hides some subtleties about integration.

2.1 Integration by substitution and the dx

It has already been mentioned, that differential forms are the natural integrands, not
functions. Now, what is meant by this statement? In school, you might have already seen
the example, why the dx is necessary. Here, we want to formalize this example further,
embedding it into the context of differential forms.
Let φ : R → R be a differentiable map. This map can be regarded as coordinate

transformation in the sense, that it rescales the x-axis. Then of course, the inverse,
reverses the scaling, since φ ◦ φ−1 = IdR. If φ transforms coordinates, one has to account
for this effect on the side of functions. This is done by φ∗f , which just means

φ∗f(x) = f(φ(x)) .
Understanding integration as measuring the oriented surface under the graph of a function,
changing the scale of the x-axis, will change the result. To fix this, one applies the following
rule: ∫

φ(R)
=
∫
R
φ∗ .

Intuitively speaking, instead of changing the x-axis, one changes the functions.
Returning to the question about the dx. Let us now pretend, functions are the natural

integrals. Then for I = [a, b], we would get
b∫
a

f(x) =
∫
I

f(x) =
∫

φ(φ−1(I))

f(x) =
∫

φ−1(I)

φ∗f(x) =
φ−1(b)∫
φ−1(a)

f(φ(x)) .

This however is not the substitution rule. You can check yourself by calculating some
examples, that the above equation does not hold.
So at this point it becomes clear, that functions are not the proper integrand. On the

other hand, one forms f(x) dx are. To obtain the substitution rule, all we need to do, is
to find the action fo φ on dx. One can show, that φ∗dx = dφ(x) = φ′(x) dx. Then:

b∫
a

f(x)dx =
φ−1(b)∫
φ−1(a)

φ∗f(x) dx =
φ−1(b)∫
φ−1(a)

f(φ(x))φ′(x) dx ,
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which is the substitution rule.

Example 2.1.
So far, the dx can be dismissed as formality of mathematics. It turns out however,
that the distinction between differential forms f(x) dx and the corresponding (density)
functions f(x) is quite a physical one. Consider for example Planck’s law. The
intensity is usually written as

I(ν) = 2hν3

c2
1

e
hν
kBT − 1

and I(λ) = 2hc3

c2
1

e
hc

λkBT − 1
.

When you use the frequency-wavelength relation of light, ν = c
λ
, you find, that the

formulas seem to contradict. You are missing a factor of c
λ2 . With dν = d( c

λ
) =

− c
λ2 dλ, you obtain

I(ν) dν = −I(λ) dλ .

Note, that the − appears, because you change the orientation of the axis, i.e.
increasing frequency corresponds to decreasing wave length.
This discrepancy on the function level hints at a very important physical interpre-
tation. The intensity densities I depend on a choice of scaling. So they have no
physical existence of their own. To fix this “gauge-variance“, one has to add the
scaling information by dν or dλ. The physically relevant intensities I(ν) dν and
I(λ) dλ do not contradict (assuming oriented integration).

2.2 Examples of the integration operator

There are two prime examples for the integration operator and the fraction notation. The
first is the derivation of the kinetic energy from the general definition. The second is the
separation of variables technique to solve differential equations.

The definition of Energy is, to integrate the force (one-form) along the path. So in one
dimension, E =

∫
dx F (x). If the force is of the general form F (x) = mẍ, then

T =
∫
dx F (x) =

∫
dt
dx(t)
dt

m · d
2

dt2
x(t) =

∫
dt
d

dt

1
2m

(
d

dt
x(t)

)2


= 1
2mẋ(t)2 + const. .

Remark 2.2.
In the standard notation,using the substitution rule , the derivation looks as follows:

T =
∫
F (x) dx =

∫
F (x(t)) dx(t) =

∫
F (x(t)) ẋ(t) dt =

∫
m · ẍ(t) · x(t) dt

=
∫ d

dt
(1

2mẋ(t)2) dt =
∫
d(1

2mẋ(t)2) = 1
2mẋ(t)2 + const. .

For the second example, consider a differential equation f ′(x) = g(x) · h(f(x)). The
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procedure of separating the variables works as follows:

f ′(x) = g(x)h(f(x)) −→ df

dx
= g(x)h(f) −→ 1

h(f) df = g(x) dx

−→
∫ 1
h(f) =

∫
g(x) dx

Remark 2.3.
Here, the general procedure is easily memorable. However, the proper mathematical
procedure is not that difficult either, as it is only the substitution rule. Furthermore,
it is more instructive about the dependencies. Assume that h(f(x0)) 6= 0. Then
there exists a neighborhood U around x0, such that for all x ∈ U , the straightforward
integration of g(y) = f ′(y)

h(f(y)) is a solution. Then, all there is left to do, is to use the
substitution rule: ∫ x

x0
g(y) dy =

∫ x

x0

f ′(y)
h(f(y)) dy =

∫ f(x)

f(x0)

1
h(f) df .

3 Tensors and tensor indices

Sooner or later, one will encounter terms like ∂µxµ or Rµ
µ, etc.. The concept behind this

notation, or better called “set of rules to manipulate indices”, is that of tensors and tensor
fields. Asking a mathematician, tensors are introduced by a universal property. Asking a
physicist, tensors are most likely described as components of “something”, that transform
in a certain way. The physicists point of view allows for a powerful set of rules for quick
calculations. However, to get some insight, the mathematical approach is better suited.

3.1 The dual space

To understand the difference between vµ and vµ, one needs to understand the concept of
the dual space. Let V be an F vector space with finite dimension, for simplicity. Here,
F can be either R or C. One can consider linear maps ` : V −→ F. These form a vector
space themselves, defining

(α1`1 + α2`2)(v) = α1`1(v) + α2`2(v) ∀ v ∈ V .

Definition and Lemma 3.1.
The vector space V ∗ := {` | ` is a linear map V −→ F} is called dual (vector)
space. If {ei}i=1,...,n is a basis of V , then {ϑi}i=1,...,n, where ϑi is defined by

ϑi(ej) := δij ≡
{

1 , i = j
0 , i 6= j

is a basis of V ∗, called dual basis. Dual vectors are also called covectors.
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Proof 3.2.
Let ` ∈ V ∗. Then there are numbers αi ∈ F with `(ei) = αi. It follows that
` = ∑

i αiϑi. Indeed:

`(v) = `

∑
j

vjej

 =
∑
j

vj`(ej) =
∑
j

vjαj =
∑
i,j

vjαiδij =
∑
ij

vjαiϑi(ej)

=
∑
i

αiϑi

∑
j

vjej

 =
∑
i

αiϑi(v) ≡
(∑

i

αiϑi

)
(v) .

Remark 3.3.
In the usual Rn basis representation, a vector v = ∑

i viei is written as column
vector

v =


v1
...
vn

 .

Then, linear maps are written as matrices. Dual vectors as linear maps from V
in F are then just 1× n matrices ϕ = (ϕ1, . . . , ϕn) and the action ϕ(v) becomes
the matrix product:

ϕ(v) = (ϕ1, . . . , ϕn)


v1
...
vn

 = ϕ1 · v1 + . . .+ ϕn · vn .

This implies, that dim(V ) = dim(V ∗). Furthermore, choosing a basis B = {ei} yields an
isomorphism IB : V −→ V ∗ , ei 7−→ ϑi. However, this isomorphism does depend on the
chosen basis, i.e. is not canonical. If the vector space carries a real inner product, i.e. is
Euclidean, the isomorphism becomes independent of any such choice.

Lemma 3.4.
Let V be a vector space with Euclidean inner product 〈·, ·〉, then ` : V −→ V ∗ , v 7−→
I(v), defined by

I(v)(w) = 〈v, w〉

is an isomorphism.

Proof 3.5.
Linearity follows from the linearity of the inner product. It can be shown, that there
is an orthonormal basis {ei}. Then

I(ei)(ej) = 〈ei, ej〉 = δij ⇒ I(ei) = ϑi .

So I : ei −→ ϑi, which is bijective.
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Remark 3.6.
A more abstract way to prove bijectivity that emphasizes the independence of the
choice of basis, looks as follows: From 〈v, 0〉 = 0, injectivity follows, and surjectivity
is then a consequence of the rank nullity theorem.

Since the dual space is itself a vector space, one can consider the dual space of the dual space,
called bidual space V ∗∗. For finite dimensional vector spaces, L : V 7−→ V ∗∗ , v 7−→ Lv,
defined by Lv(ϕ) = ϕ(v), is a (canonical) isomorphism. For that reason, we may define:

v(ϕ) = ϕ(v) ∀ v ∈ V , ϕ ∈ V ∗ .

3.2 Tensors and the tensor space

One can introduce tensors with a universal property. This approach allows to show, that
the tensor product of two vector spaces always exists and that it is unique up to isomorphy.
Yet, that approach is highly abstract and can deter from the use of tensors, if not used to
universal properties. For that reason, we choose a more constructive approach here.

Let V and W be vector spaces (possibly dual spaces, too). For v ∈ V and w ∈ W , the
tensor product is just a pair (v, w) = v ⊗ w, that is bilinear and distributive:

(αv)⊗ w = v ⊗ (αw) , (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

and v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2 .

One cannot reduce v ⊗ w any further, as it is just a special pair (v, w). Not, that the
tensor product is not commutative in general, i.e. v ⊗ w 6= w ⊗ v.

Definition 3.7.
Let {ei}i=1,...,n be a basis of V and {fj}j=1,...,m be a basis of W . Then, the tensor
space V ⊗W is the linear span of the ei ⊗ fj.

From the definition, it is not clear, if the tensor space depends on the choice of bases.
However, this can be proven from the following universal property. Let Φ: V ×W −→ U
be a bilinear map to another vector space. Then there exists a unique linear map
φ : V ⊗W −→ U , such that the following diagram commutes (i.e. φ ◦ ⊗ = Φ):

V ×W U

V ⊗W

Φ

⊗ ∃!φ

Since the tensor space is a vector space again, one can build (U ⊗ V )⊗W , etc. . It can
also be shown, that the tensor product is associative, i.e.

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ) ≡ U ⊗ V ⊗W .
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Tensors as multilinear maps

With the definition of V ∗ as Hom(V,F) and the isomorphy V ∗∗ ∼= V , given by v(ϕ) = ϕ(v),
tensors can be regarded as multilinear maps. Let for example T = u⊗ϕ⊗ v ∈ U ⊗V ∗⊗V .
Then one defines

T (ξ, x, φ) = u(ξ) · ϕ(x) · v(φ) = ξ(u) · ϕ(x) · φ(v) ∀ ξ ∈ U∗, x ∈ V, φ ∈ V ∗ .

So all one does is to use the natural action ϕ(v) and v(φ) = φ(v) etc. component wise,
and replace ⊗ with ·.

Tensors and linear maps

Having only the right part of tensors of the form V2 ⊗ V ∗1 act on a vector v1 ∈ V1, these
tensors define linear maps V1 −→ V2. More precisely:

Lemma 3.8.
There is an embedding V2 ⊗ V ∗1 into Hom(V1, V2), defined by the following injective
linear map

V2 ⊗ V ∗1 ↪→ Hom(V1, V2) , v2 ⊗ ϑ1 7→ `v2,ϑ1 ,

where `v2,ϑ1(v) = ϑ1(v) · v2. This map can be extended linearly for V2 ⊗ V ∗1 .

The embedding is an isomorphy in the finite-dimensional case.

Corollary 3.9.
Let {ei}i be a basis of a finite-dimensional vector space V and {ϑj}j the dual basis.
Then, every linear operator L ∈ Hom(V,W ) can be written as tensor from W ⊗ V ∗:

L =
∑
i

(Lei)⊗ ϑi .

Assuming Lmn are the coefficients of the matrix representation of L (in the basis {ei}).
Then it holds that Lei = ∑

m Lmiem. One obtains

L =
∑
i

(Lei)⊗ ϑi =
∑
m,i

Lmi(em ⊗ ϑi) .

Remark 3.10.
On an abstract level, the terms em ⊗ ϑi are convenient to work with:

(em ⊗ ϑi)(v) = ϑi(v) · em = ϑi

(∑
k

vkek

)
· em =

∑
k

vkϑi(ek) · em =
∑
k

vkδik · em

= vi · em .

This means, that em ⊗ ϑi projects the i-th component of v on the m-th component
axis. This calculation also reveals how to calculate the tensor product, when denoting
vectors as columns

(...) and dual vectors as columns (· · · ). For simplicity here in 2
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dimensions: (
1
0

)
⊗ (1, 0) =

(
1 0
0 0

)
,

(
0
1

)
⊗ (1, 0) =

(
0 0
1 0

)
,

(
1
0

)
⊗ (0, 1) =

(
0 1
0 0

)
,

(
0
1

)
⊗ (0, 1) =

(
0 0
0 1

)
.

For general (dual) vectors
(
v1
v2

)
and (ϕ1, ϕ2), the tensor product works as follows:

(
v1

v2

)
⊗ (ϕ1, ϕ2) =

((
v1

v2

)
(ϕ1)

(
v1

v2

)
(ϕ2)

)
=
(
v1ϕ1 v1ϕ2
v2ϕ1 v2ϕ2

)
.

3.3 Ricci calculus

In Ricci calculus, tensors are characterized by their coefficients (becoming a list of numbers).
There are three important principles we need to understand:

1) Components define objects
2) Position of indices determines transformation behavior.
3) Summation convention.

3.3.1 Co-and contravarianz

Let V be a vector space, {ei}i=1,...,n a basis and V ∗ be the dual space with dual basis
{ϑi}i=1,...,n. A vector v ∈ V is called contravariant and is described by coefficients with
upper indices:

v =
n∑
i=1

viei ≡ viei .

A dual vector ϕ ∈ V ∗ is called covariant and is described by coefficients with lower indices

ϕ = ϕiϑ
i .

In the last equation we have already used the summation convention. Over same indices,
one upper and one lower, will always be summed (without having to write the summation
symbol).
Changing the basis ei → ẽi does not change the element v, but its components:

v = viei = ṽkẽk .

By definition there are coefficients, such that ei = Ajiẽj can be written. Plugging in yields
the connection between vi and ṽk:

v = ṽkẽk = viei = viAjiẽj ⇒ ṽk = Akiv
i .

For the coefficients of the matrix A, we have already used the Ricci convention. Still, the
first index describes the row and the second index the columns, independent if it is an
upper or lower index.
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Remark 3.11 (Composition of linear maps).
Let A,B ∈ End(V ) for a finite dimensional vector space V . Due to the isomorphy
End(V ) ' V ⊗ V ∗, these maps can be written as tensors:

A = Aei ⊗ ϑi = Ajiej ⊗ ϑi and B = Bk
`ek ⊗ ϑ` .

Evaluating (A ◦B)(v) for an arbitrary vector v ∈ V yields

(A ◦B)(v) = Ajiej · ϑi
(
Bk

`ek · ϑ`(v)
)

= AjiB
k
`ϑ

`(v)ϑi(ek) · ej
= AjiB

k
`ϑ

`(v)δik · ej = AjiB
i
`ϑ

`(v) · ej
=
((
AjiB

i
`

)
ej ⊗ ϑ`

)
(v) .

From the last equality we can read off the coefficient behavior under composition:

(A ◦B)j` = AjiB
i
`

If A is a basis change matrix, there is an inverse A−1. From the above remark we know,
that this can be expressed by Aij(A−1)jk = δik. Dual vectors are linear and defined by
ϑi(ej) = δij and respectively ϑ̃i(ẽj) = δij, thus we find:

δij = ϑi(ej) = ϑi(Akj ẽk) = Akjϑi(ẽk) .

Since the dual vector space is also a vector space, there are coefficients such that ϑi = M i
` ϑ̃

`.
Plugging in results in the transformation behavior of covectors:

δij = Akjϑ
i(ẽk) = AkjM

i
` ϑ̃

`(ẽk) = AkjM
i
` δ
k
` = AkjM

i
k = M i

kA
k
j ⇒ M = A−1 .

⇒ ϕ = ϕ̃jϑ̃
j = ϕiϑ

i = ϕi(A−1)ikϑ̃k ⇒ ϕ̃j = (A−1)ijϕi .
By definition, basis change matrices are orthogonal/unitary. That is A−1 = A† /A−1 = AT .
Summing up our findings:

coefficients transformation basis vectors

contravariant ṽk = Akiv
i ẽk = (AT )ikei

covariant ϕ̃k = (AT )ikϕi ϑ̃k = Akiϑ
i

3.3.2 Tensors in Ricci calculus

After we have seen the foundations of Ricci calculus we can use this formulation on tensors:

Definition 3.12.
A tensor, consisting of r vectors and s covectors

T ∈ V ⊗ ...⊗ V︸ ︷︷ ︸
r times

⊗ V ∗ ⊗ ...⊗ V ∗
s times

is called tensor of type (r, s). The number r + s is called the rank, also for a
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general order of vectors and covectors.

A tensor of type (r, s) can be expanded as follows:

T = T i1...irj1...js ei1 ⊗ ...⊗ eir ⊗ ϑ
j1 ⊗ ...⊗ ϑjs .

In Ricci calculus one agrees upon the following identification:

T = T i1...irj1...js .

A change of basis results in the following transformation behavior:

T̃ n1...nr
m1...ms = An1

i1 ...A
nr
ir(A

−1)m1
j1 ...(A

−1)msjs T
i1...ir

j1...js

This behavior is used to define tensors in the physical literature.

3.3.3 Raising and lowering indices

In case of an Euclidean vector space, there is a fourth principle, induced by the inner
product:

4) Raising and lowering indices

To understand the invariant meaning behind these manipulations, instead of just defining
them, it is best to use the coordinate free formulation first. To keep the notation as close
to the textbook notation, we write 〈·, ·〉 = g(·, ·) for the inner product.1 We have already
met the isomorphism

I : vector −→ covector v 7−→ I(v) = g(v, ·) .

Remark 3.13.
In the literature, the isomorphism I and its inverse I−1 are called flat- and sharp
isomorphism respectively. The usual notation is

I(v) = v[ and I−1(ω) = ω# .

These isomorphisms can be applied to individual parts of the tensor, still defining an
isomorphism between tensor spaces. For example, a (1, 1)-tensor becomes a (0, 2)-tensor if
I ⊗ 1 is applied, and a (2, 0)-tensor, if 1⊗ I−1 is applied.
Let eµ be a basis and ϑν be the dual basis . Defining the coefficients of the inner

product by gµν = g(∂µ, ∂ν), there is an inverse matrix (list of numbers) gµν . By definition
of inner products the matrices are symmetric: gµν = gνµ and hence gµν = gνµ. For the
isomorphisms I1 and I−1

1 it follows that:

I(eµ) = g(eµ, ·) = gµνϑ
ν and thus2 I−1(ϑµ) = gµνeν .

The coefficients transform as follows:

I(vµ∂µ) = gµνv
µdxν =: vνdxν and I−1(uµdxµ) = gµνuµ∂ν =: uν∂ν .

1This comes from the more general context of Riemannian manifolds, where g is the Riemannian metric.
2eµ = I−1(gµνϑµ) = gµν I

−1(ϑµ) ⇒ gµνgµν I
−1(ϑµ) = I−1(ϑµ) = gµνeµ.
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Remark 3.14.
A contravariant vector vµ becomes a covariant vector vν by lowering the index:

vν = gµνv
µ .

Raising an index on the other hand, transforms a covector into a vector:

uν = gµνuµ .

The raising and lowering can be applied for indices of tensors separately:

gµνA
...µ...

... = A... ...µ ... .

Remark 3.15.
The inner product of two vectors uµeµ and vνeν can be written as composition:

g(uµeµ, vνeν) = uµvνgµν = uνv
ν = vµu

µ .

4 Dirac Notation and its pitfalls

The Dirac notation is usually introduced in introductory courses on quantum mechanics.
Here, we are concerned about the notation scheme itself, rather than the context of its
natural appearance. This is not only to focus on the notational aspects, but also since the
generality in which the Dirac notation is used can be misleading. In quantum mechanics,
one considers (infinite) dimensional vector spaces, that have a (hermitian) inner product,
such that all Cauchy sequences converge w.r.t. the norm induced by it. These vector
spaces are called Hilbert spaces.3 In general, an arbitrary Hilbert space does not have
an orthonormal basis. In fact, the concept of basis becomes more difficult in infinite
dimensional spaces. For that reason, one defines Hilbert bases as an infinite orthonormal
sequence of vectors, with which one can linear combine almost all vectors.4 It is not given,
that such a sequence exists. Indeed, one can construct examples, where this is not the
case. Hilbert spaces, that admit such a Hilbert basis are then called separable. Assuming,
the Hilbert spaces in quantum mechanics are separable, then the question is, if the results
from linear algebra carry over. Some do, although for non-trivial reasons, while other ones
do not.
To be not concerned with the mathematical subtleties in the background, we confine

the considerations here to finite dimensional vector spaces.

4.1 Bras and Kets

In Dirac notation, vectors and covectors get some augmentation to visually represent their
origin. This representation mimics the bracket 〈·, ·〉 of an inner product.

3Note that all finite dimensional Euclidean/unitary vector spaces are Hilbert spaces.
4More precisely, the norm closure of the span of the Hilbert basis is the full Hilbert space
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Definition 4.1.
Let V be a vector space and v ∈ V as well as ϕ ∈ V ∗. Vectors are denoted by |v〉 and
are called ket-vectors. Covectors are denoted by 〈ϕ| and are called bra-vectors.

The terminology originates from the bracket resemblance. In fact, writing ϕ̄ is more than
just a notation. In case of an Euclidean vector space, we have seen that I : v 7−→ I(v) :=
〈v, ·〉 is an isomorphism. Instead of writing 〈I(v)|, one uses, that 〈·| is enough to show,
that it is a covector, and hides the isomorphy.

If the vector space V is unitary, the map I : |v〉 7−→ 〈v| is no longer an isomorphism. It
is still a bijection, but not linear:

I(αv)(w) = 〈αv, w〉 = α〈v, w〉 = αI(v)(w) 6= αI(v)(w) ∀ α ∈ C .

Yet, choosing a basis (since V is finite dimensional), we can construct an isomorphism, so
V ∼= V ∗. In infinite dimensions, the map I : |v〉 7−→ 〈(|v) retains bijectivity, but is also no
isomorphism. This result is known as Fréchet-Riesz representation.5
For the rest of this section, we assume V to be unitary. The Euclidean case is similar,

if not to say easier, since I becomes an isomorphism in that case. To summarize the
notation, we consider the bra and ket-vectors of αv + βw ∈ V :

|αv + βw〉 = α|v〉+ β|w〉 and 〈αv + βw| = α〈v|+ β〈w| .

4.2 Scalar product and operators

As much as the Dirac notation suggests the inner product, it makes some intermediate
steps, a beginner might need, more obscure. To fix this problem for the moment, we denote
the hermitian inner product by 〈·, ·〉 ≡ (·, ·) : V × V −→ C, when inserting ket-vectors.
Then, as an inner product takes two vectors of the same vector space as arguments, we
find:

(|v〉, |w〉) = (v, w) ≡ 〈v, w〉 .

In the literature, one often finds the statement, that a bra- and a ket-vector, join together
to the inner product:

〈v||w〉 = 〈v|w〉 .

Yet, this is defining a map V ∗ × V −→ C, not V × V −→ C. In terms of the standard
notation, we find:

〈v||w〉 = I(v)(w) = 〈v, w〉 = 〈v | w〉 .

So joining bra- and ket-vectors is not a scalar product, but the Fréchet-Riesz representation,
which uses the inner product. With the notation set up here, we can give the intermediate
steps, to calculate the scalar product between α1|v1〉+ α2|v2〉 and |w〉:

(α1|v1〉+ α2|v2〉, |w〉) = α1(|v1〉, |w〉) + α2(|v2〉, |w〉) = α1〈v | w〉+ α2〈v2 | w〉 .

Using only Dirac notation, the calculation looks as follows:

α1|v1〉+ α2|v2〉 = |α1v1 + α2v2〉
5For separable Hilbert spaces H it furthermore also holds that H ∼= H∗
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 〈α1v1 + α2v2 | w〉 = 〈α1v1 + α2v2 || w〉 = (α1〈v1|+ α2〈v2|)|w〉 = α1〈v | w〉+ α2〈v2 | w〉 .

A further notation rule enters, when dealing with operators. In finite dimensions, there
is no distinction between operator and linear map.6 So let A : V −→ V be a linear map.
Then one writes |Aw〉 = A|w〉. It is also common, to emphasize the abstract meaning of
A|w〉, which requires to know how A acts on w, by writing Â|w〉 = |Aw〉. The linear map
A is then regarded as a representation of the abstract operator Â, similarly to matrices
being basis representations of abstract linear maps. Then, the notation is

〈w | Â | v〉 = 〈w | Av〉 .

In quantum mechanics, the hermitian adjoint is defined by

〈Aw | v〉 = 〈w | A†v〉 = 〈w | Â† | v〉 .

Notice, that the definition of A† does not depend on the position in the inner product:

〈w | Av〉 = 〈Av | w〉 = 〈v | A†w〉 = 〈A†w | v〉 .

Furthermore, the hermitian adjoint is an involution, i.e. (A†)† = A:

〈Aw | v〉 = 〈w | A†v〉 = 〈A†v | w〉 = 〈v | (A†)†w〉 = 〈(A†)†w | v〉 .

In fact, to be more precise, it is called anti-involution for it exchanges the order of operators,
(AB)† = B†A†:

〈w | (AB)†v〉 = 〈ABw | v〉 = 〈Bw | A†v〉 = 〈w | B†A†v〉 .

Remark 4.2.
A common interpretation is then, that A† acts on 〈w| by 〈w|A† = 〈Aw|. In case
of vector spaces with inner product, this interpretation may make sense. On a
fundamental level however, A† is a map V −→ V , while 〈w| ∈ V ∗. There is another
derived operator from A, acting on V ∗, needing no inner product. The dual operator
A∗ is defined by

(A∗ϕ)(v) := ϕ(Av) ∀ v ∈ V, ϕ ∈ V ∗ .
In this case, we have a hermitian inner product and thus the Fréchet-Riesz represen-
tation I : V −→ V ∗. Let know ϕ = I(w), then we find

(A∗ϕ)(v) = ϕ(Av) = I(w)(Av) = 〈w,Av〉 = 〈A†w, v〉 = I(A†w)(v) .

⇒ A∗I(w) = A∗ϕ = I(A†w) = I(A†w) ⇒ I−1(A∗(I(w))) = (I−1◦A∗◦I)w = A†w

⇒ A† = I−1 ◦ A∗ ◦ I ⇔ I ◦ A† = A∗ ◦ I ,
which is the usual way, transformations of vectors act on linear maps. Recalling the
Dirac notation I : |v〉 7−→ 〈v|, we find:

〈A†w| = I(A†|w〉) = I ◦ A†(|w〉) = A∗ ◦ I(|w〉) = A∗〈w| .

Another notation used in physics is |v〉† = 〈v| and 〈v|† = |v〉.
6Most of the complicated concepts become trivial in finite dimensions. Every linear map between finite
dimensional vector spaces is automatically continuous, bounded, compact etc. .
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Remark 4.3.
What is meant with this is of course the Fréchet-Riesz representation. The hermitian
adjoint makes no sense here. One also encounters the notations (Â|v〉)† = 〈v|A† and
(〈v|A)† = A†|v〉. Again, all that is happening here is the Fréchet-Riesz representation.
For example:

I(A|v〉) = (I ◦ A)|v〉 = (I ◦ (A†)†)|v〉 = ((A†)∗ ◦ I)|v〉 = (A†)∗〈v| =: 〈v|A† .

4.3 Tensors in Dirac notation

We have already seen, that tensors of the form ei ⊗ ϑj are linear maps V −→ V . In fact,
they are a basis of End(V ). Applying Dirac notation, one would assume to write |ei〉⊗〈ej|,
where we used that I(ej) = ϑj, and the notation convention I : |v〉 → 〈v| = I(v). Now,
in Dirac notation, it is common practice, to understand the connection of two angled
brackets always as tensor product, and to suppress the symbol ⊗:

|v〉 ⊗ 〈w| = |v〉〈w| .

The application of |v〉〈w| as linear map becomes quite natural in this notation (at least as
long as only one particle is considered). As a reminder, in the usual notation, we would
need to write :

(v ⊗ I(w))(u) = I(w)(u) · v = 〈w, u〉v .
In Dirac notation, this becomes

|v〉〈w||u〉 = |v〉〈w | u〉 = 〈w | u〉|v〉 .

Observe, that 〈· | ·〉 is only a scalar, and the tensor product is just the usual product.7

Lemma 4.4.
Let v ⊗ ϕ ∈ V ⊗ V ∗ ∼= End(V ), then it holds that (v ⊗ ϕ)∗ = ϕ⊗ v and (v ⊗ ϕ)† =
I−1(ϕ)⊗ I(v).

Proof 4.5.
For the first equation, it has to be shown by definition, that ((ϕ⊗v)ω)(u) = ω((v⊗ϕ)u):

((ϕ⊗ v)ω)(u) = (v(ω) · ϕ)(u) ≡ (ω(v) · ϕ)(u) = ω(v) · ϕ(u) = ω(ϕ(u) · v)
= ω((v ⊗ ϕ)u) .

The second equation can be shown with the definition of the Fréchet-Riesz represen-
tation I(v)(x) = I(v)(x) = 〈v | x〉. Then:

〈y | (v ⊗ ϕ)x〉 = 〈y | ϕ(x)v〉 = ϕ(x)〈y | v〉 = ϕ(x)〈v | y〉 = 〈I−1(ϕ) | x〉I(v)(y)
= I(v)(y)〈I−1(ϕ) | x〉 = 〈I(v)(y) · I−1(ϕ) | x〉
= 〈(I−1(ϕ)⊗ I(v))y | x〉 .

7This comes form the isomorphism F⊗F V ∼= V , defined by α⊗F v 7−→ α · v.
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In Dirac notation, the main result reads (|v〉〈w|)† = |w〉〈v|. In fact, this result fits in
nicely with the physics notation |v〉† = 〈v| and 〈w|† = |w〉, as the hermitian adjoint is an
anti-involution:

(|v〉〈w|)† = 〈w|†|v〉† = |w〉〈v| .

Remark 4.6.
Again, |v〉† etc. are not well defined. However (|v〉〈w|)† is indeed well defined,
understanding |v〉〈w| ∈ V ⊗ V ∗ ∼= End(V ).

Corollary 3.9 has the important consequence, that abstract operators can be expressed as
(choosing a orthonormal basis |en〉):

L =
∑
n

L|en〉〈en| .

A common way to denote a Hilbert basis/orthonormal basis, is to just use the index
|n〉 ≡ |en〉. Operators can then be written as

L =
∑
n

L|n〉〈n| .

Since we are in finite dimensions, we can fully utilize linearity.8 Consider the unit operator
1 ∈ End(V ), defined by 1|v〉 = |v〉. It follows that

1 =
∑
n

|n〉〈n| .

For Hilbert spaces, this is called completeness relation. For the moment, we are in a
finite dimension vector space, such that sums and liner maps commute. This holds especially
for bra-vectors as linear maps V −→ C and ket-vectors as linear maps V ∗ −→ C. A
general procedure is now, to insert unit operators, to obtain easier to calculate expressions:

|v〉 = 1|v〉 =
∑
n

|n〉〈n | v〉 , 〈v| = 〈v|1 = 〈v|
∑
n

|n〉〈n| =
∑
n

〈v | n〉〈n| .

These are just the basis expressions for |v〉 and 〈v|. With this, also inner product can be
manipulated:

〈v | w〉 = 〈v|1|w〉 = 〈v|
∑
n

|n〉〈n | w〉 =
∑
n

〈v | n〉〈v | w〉 .

Remark 4.7.
What we have used here, is linearity. For infinite dimensional Hilbert spaces, this
does not work, since one is dealing with limits. However, if the Hilbert space is

8Let A be a linear operator, and vn be vectors. Then
∑N
n=1 Avn = A

∑N
n=1 vn. However, linear operators

and limits do not commute in general (unless it is also continuous). Hence:

∞∑
n=1

Avn = lim
N→∞

N∑
n=1

Avn = lim
N→∞

A

N∑
n=1

vn 6= lim
N→∞

A

N∑
n=1

vn = A

∞∑
n=1

vn .
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separating, i.e. has a Hilbert basis, it is an important theorem, that the completeness
relations hold, and vice versa. However, careful application of this theorem yields in
most cases the same result, as the physics completeness relation.

4.4 Position representation and abuse of notation

In the end, we do not get around infinite dimensional spaces to give full account of the Dirac
notation, as used in physics. Most of the time, when working with quantum mechanics,
one is considering one of the following two cases. The Hilbert space is not specified further,
but treated as abstract vector space with the Hilbert basis {|n〉}. The second one is, to
consider the position representation with wave functions ψ(x).

Example 4.8.
In finite dimensions, this is similar to the treatment of vector spaces. Let V be
an n-dimensional abstract vector space. As such, one can choose a basis {vj}.
This defines an isomorphism to Rn by vj 7−→ ~ej. Then arbitrary vectors v can
be represented as tuples (v1, . . . , vn)T . Another example, more reminiscent of the
position representation is Kn−1[R]. This is the rather concrete vector space of
polynomials p = ∑n−1

j=0 αjx
j. A basis of this space is vn = xn for n = 0, . . . , n− 1.

The Hilbert space used for the position representation is L2(Rn). This is the space of
square integrable (complex valued) functions over Rn. So

f ∈ L2(Rn) ⇔ f is integrabel and
∫
Rn
|f(x)|2 dxn <∞ .

Remark 4.9.
To be more precise, L2(Rn) is actually the set of square integrable functions. The
integral used in this context is the Lebesgue integral, a generalization of the Riemann
integral. If the Riemann integral exists however, both integrals coincide. The
Lebesgue integral is not sensitive of single points (more generally sets with measure
zero). To create a Hilbert space, one has to define equivalent classes [f ]∼ of functions.
Another function is in the same class g ∈ [f ]∼, if g ∼ f . The equivalence relation ∼
used here is, that g is equal to f , with possible exceptions on zero sets, which the
Lebesgue integral does not see anyway. In that sense, in actually makes not sense
to write something like f(x) because for g ∈ [f ]∼ it can happen that g(x) 6= f(x).
Hence the values on single positions are not uniquely defined.

The inner product on L2(Rn) is defined as follows:

〈f | g〉L2 =
∫
Rn
f(x) · g(x) dxn .

With z · z = |z|2 it follows that square integrability means finite norm:

‖|f〉‖2
L2 = 〈f | f〉L2 =

∫
Rn
f(x)f(x) dxn =

∫
Rn
|f(x)|2 dxn <∞ .
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For the rest of the section, we consider the special case n = 1, i.e. L2(R), which
introductory quantum mechanics restrict to. A Hilbert basis of L2(R) is given by the
Hermite polynomials |Hn〉, where

Hn(x) = e
x2
2

(
− d

dx
+ x

)n
e
x2
2 .

Yet, these polynomials are rather cumbersome. Although there exist proper Hilbert bases
for L2(R), physicists often use another “basis” instead. Physicists define the so called
position states |x〉 and momenta states |p〉

|x〉 = δ(x− ·) and |p〉 = e
ipx
~ .

These states are problematic as they do not belong to the Hilbert space, are neither a
basis, nor a Hilbert basis. Indeed,∫

R
|e

ipx
~ |2 dx =

∫
R

1 dx =∞ .

Though the delta function might result a finite integral, it is not a function at all. It can
even be proven, that no function exists, that exhibits all the demanded properties. There
does exist a framework, where delta functions make perfect sense. Delta functions are
singular, i.e. not as function representable, distribution. Using distribution theory, the
states |x〉 and |p〉 can be used rigorously.

Remark 4.10.
As is often the case, the rigorous treatment is more complicated, and generally not
allowing the same rules for calculations as linear algebra does. Most of the notational
rules, that will follow, can be derived in a proper way. However, from this point
on, one will reach the point, where there is a mathematical theory yet to be found.
One example is quantum field theory, where manipulations with these states and
delta functions for the fields would need product of distributions. An operation, that
is not well defined in general, and does not cover all the operations needed for qft.
The other major formulation, path integrals also have no complete mathematical
description yet. This is more puzzling, as some of the most well measured constant
are in accordance to the by qft calculated values.

The position and momenta states are sometimes called pseudo eigen states. Pseudo in
the sense, that they are not states in the Hilbert space L2(R). As we have seen in subsection
4.2, one abstractly writes x̂|f〉 and p̂|f〉 for the position and momentum operators. Since
we have a concrete Hilbert space, one needs to specify, what the concrete representation x
and p are:

xf(x) = x · f(x) and pf = −i~∂xf(x) .
Then, we find, that

p̂|q〉 = −i~∂xe
iqx
~ = −i~(i~)qe

iqx
~ = qe

iqx
~ = q|q〉 .

For the position state, we note that a property of the delta function is, that f(x)δ(x−y) =
f(y)δ(y − x). So

x̂|y〉 = x · δ(y − x) = y · δ(y − x) = y|y〉 .
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The pseudo eigen states are orthonormal w.r.t. the delta function orthonormality:9

〈x | y〉 =
∫
R
δ(x− q)δ(y − q) dq = δ(x− y) ,

〈p | q〉 =
∫
R
e
ipx
~ e

iqx
~ dx =

∫
R
e
−ipx

~ e
iqx
~ dx =

∫
R
e
i(q−p)x

~ dx =
∫
R
ei(q−p)y d(~y)

= h
∫̄

R
ei(q−p)y dy = 2π~δ(q − p) .

Another notation, inspired by the action of the delta function is:

〈x | f〉 =
∫
R
δ(x− y)f(y) dy = f(y) and 〈f | x〉 = f(x) .

Finally, the completeness relation is used as

1 =
∫
R
dx |x〉〈x| .

Remark 4.11.
In quantum mechanics courses, one discusses, that the Fourier transformation F
leads to a momentum representation. I.e. the function argument is the momentum
〈p | f〉 = f(p). In the momentum space, the completeness relation reads:

1 =
∫
R

dp

2π~ |p〉〈p| .

9It can be shown, that
∫
R
ei(q−p)x dx = 2πδ(q − p).
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