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Preface
The title might be a misnomer, as the focus of these notes is not the theory of general
relativity, but rather the mathematics behind it. However, the basic concepts of a
beginners course on general relativity are included. An exception is the chapter about
special relativity, where the attempt was made to give a description that is as coordinate
free as possible, with methods from (modern) differential geometry. The longest part, by
far, is the appendix, covering the formal definition of tensors and Riemannian geometry
amongst other things. Also a noteworthy chapter is the last one, introducing vector
bundle valued differential forms almost from scratch.

Some parts of these notes were created, at the time I was learning the corresponding
concepts. So be aware, that there may not only be the usual typos, but possibly wrong
statements. In that sense, read with caution. However, nothing presented here is new,
and usually well covered in textbooks.
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1
Introduction

Before discussing the theory of general relativity, we outline the basic principles of the classical
spacetime formulation, as can be found in [Zir15a]. Inspired by this, we briefly review Newtonian
gravity from a differential-geometrical perspective.

1.1. Galilean spacetime

The basis of all physics is the underlying concept of time and space. In classical
mechanics the model for these concepts is the Galilean spacetime.

Definition 1.1.1.
The Galilean spacetime is a 4 dimensional affine space1(M,V,+) with the
following properties:
i) There is a unique linear form τ on V , called absolute time.
ii) The subspace of spacial translations V0 := {v ∈ V |τ(v) = 0} is Euklidean.

Points in spacetime p ∈M are called events. Due to the absolute time, simultaneity
has a well defined meaning, i.e. two events p, q ∈M are simultaneous if τ(p− q) = 0.
There is no absolute space however. That is, there is no unique construction of a vector
space Vt with V = Vt ⊕ V0, splitting V in space an time directions. Thus the choice of
Vt is arbitrary. Physically speaking, the choice of Vt is the choice of an inertial system.

E3

E3

E3

A B

(a) Being in system A, perceiving system B moving
with velocity v.

E3

E3

E3

B
A

(b) Being in system B, perceiving system A moving
with velocity −v.

Figure 1.1.: There is no unique decomposition of V in Vt ⊕ V0. Both systems are equal according to
the principle of relativity.

1More generally a 4-dim flat manifold M . The difference vector space V is the tangent space and the
addition +: M × V →M is the parallel transport.
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There is a group of transformations, preserving the structure of Galilean spacetime,
calledGalileo group G. This group describes the symmetries of the classical spacetime.

Definition 1.1.2 (Properties of Galileo transformations).
Let g : M →M be a Galileo transformation, then the following properties hold:
i) Preservation of affine structure:
g(p) = g(σ) +Dσg(p− σ) ∀p ∈M .

ii) Preservation of absolute time: τ ◦Dσg = τ .
iii) Preservation of metric:
〈Dσg|V0v,Dσg|V0v

′〉 = 〈v, v′〉 ∀v, v′ ∈ V0.

The formulation of mechanical laws is unnecessarily complicated in M . Therefore,
classical mechanics is usually described in an inertial system. This allows to reduce M
to E3.

1.2. Newtonian gravitation

M
p1

m
p2~F

p2− p1

Figure 1.2.

Consider a mass point with mass M at position
p1. If there is a second mass point m at position
p2, then there is a force between the two mass
points.According to Newton’s theory of gravitation,
the force that mass 1 exerts on mass 2 is given by

~F1 on 2 = GMm

‖p1 − p2‖3 (p1 − p2) .

If we fix the position of the first mass and move the second mass around, we find, that
there is a force at every point in space. A more modern formulation of physics requires
forces to be differential 1 forms.2 It is easiest to use spherical coordinates centered at
p1:

~F = −GMm

r2 ~er ⇒ F = −GMm

r2 dr .

In electrostatics there is an underlying Field E, creating the force on test charges.
The exact value of the force depends on the charge q of the test charge, i.e. F = qE.
Inspection of the force field created by mass points shows, that the mass m behaves
like the charge:

F = m · g with g = −GM
r2 dr .

The field g is called Newtonian gravitational field.
It can easily be seen, that there are functions f so that df = g holds. Using the

physical sign conventions and usual boundary conditions for potentials results in

Φ(p) = −GM
r(p) ⇒ g = −dΦ .

2The easiest way to see this, is the definition of work W =
∫
γ
F , where F is the force 1 form, the

natural integrand over paths γ.
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The equation g = −dΦ may be more familiar in classical vector calculus : ~g = −~∇Φ.
So far, we have only discussed idealized mass points. Nevertheless this treatment of

gravity is justified. Before we can proof this, we need to find a description of finite
mass distributions.

Definition 1.2.1.
The mass density ρ is a 3 form with the property, that

∫
U ρ is the mass of the

described mass distribution in the region U .

Comparing the mass density and the sum of mass points shows, how to generalize the
additivity of gravitational potentials:

Φ(p) = −
∑
i

GMi

rpi(p)
continuous limit−−−−−−−−−−−−→ Φ(p) = −

∫
E3

Gρ

rp
.

The distance function rp is defined by rp(q) = ‖p− q‖.

Lemma 1.2.2.
For any mass distribution there is a poisson equation:

∆Φ = 4πG ? ρ .

Proof 1.2.3.
Contrary to electrostatics we do not have the differential equation connecting the
mass density with a gravitational field yet. To obtain such a relation we integrate
the 2 form ?g over the surface ∂U of a volume U 3enclosing the whole mass:

∫
∂U
?g = −

∫
∂U

GM

r2
p

? drp = −
∫
∂U

GM

r2
p

r2
pτp = −GM

∫
∂U
τp

= −4πGM ,

where we used the solid angle 2 form τp = sin(θ)[dθ ∧ dφ,R]. With the definition
of the mass density we find: ∫

∂U
?g = −4πG

∫
U
ρ .

In 3 dimensions any 3 form is closed. By the lemma of Poincaré there is a 2 form
g such that dg = ρ. With Stoke’s theorem we find:∫

∂U
?g = −4πG

∫
U
dg =

∫
∂U

g .

Since U is chosen arbitrarily, the integrands are equal. Thus we found an equivalent
to Gauss’ law for gravity:

d ? g = −4πGρ .
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In odd dimensions the hodge star operator is self inverse ?−1 = ?. If we also use
−dΦ = g we get:

−d ? dΦ = −4πGρ ⇔ ?d ? dΦ = 4πG ? ρ .

The Laplacian for functions can be written as ∆ = ?d ? d, which concludes the
proof.

We close this subsection by proving the first part of Newton’s shell theorem:

Theorem 1.2.4 (Newton’s shell theorem).
The external gravitational field of a spherically symmetric mass distribution is
equal to the gravitational field of a mass point at the center of the mass distribution
with the same total mass.

Proof 1.2.5.
The symmetry of the problem gives a radial ansatz for the gravitational field,
g = f(rp)drp. Integration over a ball BR(p) with radius R and the definition of
the mass density yield by Stokes’s theorem:

M =
∫

BR(p)

ρ = − 1
4πG

∫
BR(p)

d ? g = − 1
4πG

∫
∂BR(p)

?g

= − 1
4πG

∫
∂BR(p)

f(rp)r2
pτp = −R

2f(R)
4πG

∫
∂BR(p)

τp = −R
2f(R)
G

,

⇒ f(R) = −GM
R2 ⇒ g = −GM

r2
p

drp .

3The integration of the solid angle 2 form always yields 4π for these surfaces.
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Special relativity

As special case of general relativity, the theory of special relativity shows already some of the
peculiar features of spacetime. In addition, special relativity is the limit of general relativity in the
absence of gravity and high velocities. We outline the important structures, principles as well as
mathematical formulation.

2.1. Spacetime of special relativity

In 1905 Einstein published his insights about, what is now called special relativity.
Though not being the first to notice discrepancies between the relativity principle and
Maxwell’s equations, he was the first to realize the meaning of this for spacetime. Special
relativity is founded on two postulates (which are very well supported by experiment):

1) Principle of relativity:
Physical laws assume the same form in all inertial systems.

2) Constancy of the speed of light:
The speed of light has in all inertial systems the same finite value c.

These postulates give rise to the astonishing results of special relativity. One of them,
being the relativity of simultaneity, contrasting Galilean spacetime.

2.1.1. Minkowski space and Poincaré group

As for classical mechanics, there is a mathematical description for the spacetime concept
of special relativity. However a coordinate free description is rather strenuous for an
introduction. For the next four sections we will follow [Zir15b] and [Zir98] mostly.

Definition 2.1.1.
The Minkowski space M is a 4 dimensional manifold with affine structure
(M,V,+), together with a pseudo Riemannian metric g, called Minkowski
metric.

This definition of spacetime does not specify the structure of special relativity yet. To
do so, we describe properties in coordinates of inertial systems:

Definition 2.1.2.
Inertial systems are affine coordinates {x0, x1, . . . , x3} fulfilling the following
conditions:
i) g(∂xν , ∂xµ) = 0 for ν 6= µ.
ii) g(∂x0 , ∂x0) = −1 and (∂xi , ∂xi) = 1 for i = 1, 2, 3.
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iii) The orientation is given by O = dx0 ∧ dx1 ∧ dx2 ∧ dx3.

In these coordinates the Minkowski metric can be written as (0, 2)-tensor field:

g = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 .

By now we have laid down the mathematical structure of spacetime. It remains to
connect this structure to the physical postulates. To do so, we consider transformations
that preserve the structure of the Minkowski space, mapping inertial systems to inertial
systems.

Definition 2.1.3.
The Poincaré group is the group of affine maps f : M → M , that have the
following properties:
i) f preserves the metric, i.e. g(Dpfv,Dpfw) = g(v, w) ∀v, w ∈ TpM .
ii) f preserves the orientation, i.e. f ∗O = O.

Being an affine map means, that we can write f as a shift f(0) plus a linear map Λ:

f(p) = f(0) + Λ(p− 0) .

The linear maps Λ are called Lorentz transformations and form a subgroup of the
Poincaré group, called Lorentz group. The shift is, as in classical mechanics, just a
static change of origin (4 parameters as in classical mechanics), so we will only analyze
Λ.

One can easily verify Λ = Df by differentiation. Thus the conditions of Poincaré
group take the following form:

1) g(Λv,Λw) = g(v, w) ∀v, w ∈ TpM 2) det(Λ) = 1 .

Let us separate space and time for the moment. Although we do not know the exact
coefficients yet, we can assume xi for i = 1, 2, 3 to be cartesian spacial coordinates,
leaving x0 to be a coordinate describing time. Since the Minkowski metric is equal to
the familiar Euclidean metric on the spacial subspace, we know, that transformations
in that subspace are ordinary rotations. This allows us, to reduce the problem to
inertial systems only differing in motion in one direction (e.g. x1 direction). These
transformations are called boosts.

Remark 2.1.4.
It should be mentioned that the previous (and following) is no rigorous derivation
of the Lorentz group. One needs to show, that boosts in arbitrary directions and
rotations span the whole group. Although that would be an interesting topic in
Lie group theory, we focus on the physical meaning here.

2.1.2. Lorentz boosts

Before we can give an explicit transformation map, it is important to know, what kind
of transformation we want to use. There are two equal transformations in physics:
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passive transformation active transformation

M M

R4 R4

Id

x y

Ψ

M M

R4 R4

Φ

x x

Φ̃

In passive transformations the space-
time remains the same. Instead one
chooses different coordinate systems
x, y for different inertial systems. There
is a transition function between systems,
given by:

Active transformations on the other
hand use a fixed coordinate system, yet
transform spacetime accordingly:

Ψ = y ◦ x−1 Φ̃ = (x ◦ Φ) ◦ x−1

The connection between both transformations is the following condition:

Ψ = Φ̃ ⇔ y ◦ x−1 = x ◦ Φ ◦ x−1 ⇔ y = x ◦ Φ .

To follow the predominant part of the literature, we will use passive transformations here.
There are various derivations of the Lorentz transformations in different mathematical
complexities. We skip the derivation for that reason. Let (t, xi) be an inertial system
I and (t′, x′j) another inertial system I ′ moving in x1 direction with velocity v. For
simplicity assume, that both systems for t = t′ = 0 were at the same position, with the
same axis directions.1 The relations between these coordinates are:

t′ =
t− v

c2x
1√

1− v2

c2

x′1 = x1 − vt√
1− v2

c2

x′2 = x2

x′3 = x3

It is convenient to define a symbol for commonly appearing terms, e.g. the γ-factor:

γ = 1√
1− v2

c2

⇒ t′ = γ(t− v
c2x) and x′1 = γ(x1 − vt) .

So far we have found, that x0 is a time coordinate. Yet it could only be a function of
time, i.e. x0 = f(t). However that is not the case. Lorentz boosts are linear maps, that
map inertial systems to inertial systems. Thus, these maps should be contained in the
Lorentz group for the theory to be useful.2 For x0 we make the ansatz x0 = c · t. We
find (only considering t and x here):

−d(ct′)⊗ d(ct′) + dx′ ⊗ dx′ = −c2d
(
γ(t− v

c2x)
)
⊗ d

(
γ(t− v

c2x)
)

1In I ′ the system I moves with velocity −v.
2The implicit reason to consider it here.
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+ d(γ(x− vt))⊗ d(γ(x− vt))
= −c2γ2

(
dt− v

c2dx
)
⊗
(
dt− v

c2dx
)

+ γ2(dx− vdt)⊗ (dx− vdt)

= γ2(v2 − c2)dt⊗ dt+ γ2(1− v2

c2 )dx⊗ dx
+ (γ2v − γ2v)(dx⊗ dt+ dt⊗ dx)

= −c2γ2(1− v2

c2 )dt⊗ dt+ γ2(1− v2

c2 )dx⊗ dx
= −d(ct)⊗ d(ct) + dx⊗ dx .

Thus x0 = c · t is the wanted zeroth coordinate, such that Lorentz boosts preserve the
Minkowski metric.

Lemma 2.1.5.
The Lorentz boosts can be written in terms of an angle θ:

t′ = cosh(θ) t− sinh(θ)
c

x and x′ = cosh(θ) x− c sinh(θ) t .

Proof 2.1.6.
In the real numbers it holds that γ ∈ [1,∞). Since cosh(R) = [1,∞) the following
identification is possible:

cosh(θ) = γ.

The relation between the hyperbolic functions is cosh(θ)2 − sinh(θ)2 = 1. Thus
one can show

sinh(θ) = v

c
γ .

Applying the relation of cosh and sinh as well as the identification cosh(θ) = γ
shows after a little calculation the assertion.

Corollary 2.1.7.
The quotient v

c
is connected to the angle θ, by tanh(θ) = v

c
. This quantity is called

rapidity.

Reintroducing x0 allows to write the Lorentz boosts in a rather symmetrical form:
p′0

p′1

p′2

p′3

 =


cosh(θ) − sinh(θ) 0 0
− sinh(θ) cosh(θ) 0 0

0 0 1 0
0 0 0 1



p0

p1

p2

p3



Remark 2.1.8 (coordinates vs chart maps).
It is common practice in the literature to identify the chart maps with the
coordinates. To illustrate that, we consider a point p ∈ M . The coordinates
of this point are pi = xi(p). The identification of the literature is now to write
xi(p) = xi. Usually this is no problem, yet one can easily confuse transformations.3
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2.2. Minkowski diagrams

Reducing spacial dimensions to one allows to illustrate the consequences of special
relativity. The standard representations are Minkowski diagrams, where x0 and x1

are plotted. The bisection describes a system moving with the speed of light4, and has
to be invariant in all coordinate systems. For that reason, the bisection gets a special
name: light cone.

x1

x0
light cone

x′0

x′1

ϕ

ϕ

x1

x0 x′0

x′1

Figure 2.1.

The x′1-axis of a second inertial system I ′ consists of points with x′0 = 0. Likewise,
the x′0-axis consists of points with x′1 = 0. To find the axes in terms of x0 and x1, one
solves the following system of linear equations for the respective conditions:(

x′0

x′1

)
=
(

γ −γ v
c

−γ v
c

γ

)(
x0

x1

)

One can show, that the angle ϕ between the x′0- and x0-axis is the same as the angle
between the x′1- and x1-axis. Drawing the parallel lines to obtain the coordinate grid
of I ′, one can easily see, that the light cone remains the bisection.
The reduced Minkowski metric is g = −dx0 ⊗ dx0 + dx1 ⊗ dx1. As we have shown,

this metric is an invariant of Lorentz boosts:

g = −dx0 ⊗ dx0 + dx1 ⊗ dx1

= −dx′0 ⊗ dx′0 + dx′1 ⊗ dx′1 .
3Describing a particle with x(t), one is tempted to transform this as x′(t′) = γx(γ(t− v

c2x))− γvt.
As one can see, an expression like x(t, x) is meaningless. The correct transformation is:(

s′

f(s)′

)
= Λ

(
s

f(s)

)
=
(
γ(s− v

c2 f(s))
γ(f(s)− vs)

)
.

41 = x1

x0 = x1

ct = 1
cv ⇔ v = c.
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A direct consequence is the constancy of the speed of light. Utilizing the affine structure
of M allows to reframe the statement in a more obvious form. Any event p ∈M can
be written as p = 0 + v for v ∈ T0M . Thus we can consider xi(p) as coefficients of a
(tangent) vector. Calculating the negative length with ‖v‖2 = g(v, v) yields:

−‖v‖ = −g(v, v) =
(
x0(p)

)2
−
(
x1(p)

)2
=
(
x′0(p)

)2
−
(
x′1(p)

)2
.

A more common form of this equation is:

t2 − x2

c2 = t′2 − x′2

c2 .

This identity allows to find the unit points on the coordinate axes of I ′. The unit
point of the x′1-axis is (x′0 = 0, x′1 = 1). Inserting in the above equation results in
−1 = (x0)2−(x1)2. The equation of time-axis unit points is 1 = (x0)2−(x1)2. Rewriting
in terms of x0(x1) allows to plot these functions:

time: x0(x1) =
√

1 + (x1)2 ,

space: x0(x1) =
√
−1 + (x1)2 .

2.3. Time dilation and Lorentz contraction

The coordinate axes of I ′ are no longer orthogonal. Differences between points thus can
get stretched or compressed. To describe these effects without creating confusion we
need to introduce some vocabulary. The rest frame is an inertial system, that moves
along the object one wants to describe (i.e. co-moving). The time coordinate of the
rest frame is called proper time. A length measured with respect to coordinates of
the rest frame is similarly called proper length.
The difference between two events are vectors in affine spaces (or tangent vectors

on manifolds in the proper limit). Proving changes in length and time scales thus
is best done in the context of (tangent) vectors. As a reminder: Let {yµ} and {xν}
be coordinate charts. The basis (tangent) vectors corresponding to those coordinates
transform as follows:

∂

∂yµ
=
∑
ν

∂xν

∂yµ
∂

∂xν
also notice: dyµ =

∑
ν

∂yµ

∂xν
dxν .

Theorem 2.3.1.
Let I ′ be an inertial system moving with velocity v, L the proper length of an
object and T the proper time of a time interval. A measurement of these quantities
from system I yields

T = γT and L = 1
γ
L .
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Proof 2.3.2.
A time interval of length is given by T ∂

∂τ
. Expressing the (tangent) vector in the

coordinates of system I (notice that τ = t′) one finds:

T
∂

∂τ
= T

(
∂γ · (t′ + v

c2x
′)

∂t′
∂

∂t
+ ∂γ · (x′ + vt′)

∂t′
∂

∂x

)
= γT

∂

∂t
+ vγT

∂

∂x
.

Notice, that we had to use the inverse Lorentz transformation. By calculation
or physical reasoning one finds, that the substitution v → −v is enough. The
interpretation of the equation above is as follows: An event that moves for an
interval T in the future in system I ′, moves the distance vγT in positive x-direction
and γT into the future for observers in I, which is to say T = γT. Since I ′ is
moving relatively to I, it is hardly surprising, that the event moved.

To measure lengths, there is the additional hardship of simultaneity of measure-
ments between starting and ending points (in one system). That is, we need to
find a constant ξ, such that ξ ∂

∂t′
+ ∂

∂x′
∼ ∂

∂x
holds.

ξ
∂

∂t′
+ ∂

∂x′
=
(
ξγ + γ

v

c2

)
∂

∂t
+ (ξvγ + γ) ∂

∂x
!= (ξvγ + γ) ∂

∂x

⇒ ξγ + γ
v

c2 = 0 ⇔ ξ = − v
c2

L

(
∂

∂t′
+ ξ

∂

∂x′

)
= L

(
−γ v

2

c2 + γ

)
∂

∂x
= Lγ

(
1− v2

c2

)
∂

∂x
= 1
γ
L
∂

∂x

The theorem can be verbalized as follows: Moving clocks tick at faster rates (time
dilation), and moving scales shrink (Lorentz contraction). It should be noticed,
that these effects are reciprocal, expressing the symmetry between inertial systems.

2.4. Causality and Minkowski metric

We have commenced this section, by introducing the Minkowski metric and finding
the right expression for x0 in terms of classical coordinates. It remains to connect
these definitions to the second postulate of special relativity, and to highlight some of
the more unintuitive results. First of all, since the Minkowski spacetime has an affine
structure, all points p can be written as sum of the origin 0 and a (tangent) vector v(p).
Hence it is justified to talk about g(p, p) by meaning g(v(p), v(p)).
The Minkowski metric separates spacetime in three connected components. The

speed of light is the limit for all movements of real particles/information. Thus particles
can only reach the cone above the origin, and remain inside it. This region is the future,
that information from the origin may influence. Points in that region (e.g. A) are
called time like. The reason behind that naming convention is, that time like events
are separated by time, but not necessarily by distance. That is, one can find inertial
systems, in which these events lie parallel to the time axis. The past area, is similarly
the union of all events, that could have caused the origin. As one can see easily, the
condition for events p to be time like is g(p, p) < 0.
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x1

x0

future

past

presentpresent

A
B

C

Figure 2.2.

Conversely events with the property
g(p, p) > 0 (e.g. C) are called space like
events. One can find inertial systems such
that space like events lie parallel to the
space plane (3 coordinate axes). Thus
space like events are simultaneous, i.e. the
present.
Events that are located on the surface

of the light cones (e.g. B) are called light
like events. The condition g(p, p) = 0
is equal to a movement with the speed
of light (which is the property of light,
i.e. always moving with velocity c in all
systems).

2.5. Dynamics in
Minkowski spacetime (and four vectors)

In classical mechanics time was an invariant quantity up to the choice of origin. Positions
in spacetime were reduced to positions in space, depending on the time as parameter.
In special relativity such a formulation is bothersome to hardly possible, since time
coordinates have to be transformed. The solution of physics textbooks is called four
vectors. In this section we try to connect the results of [Woo16, chapter 5] with
differential geometrical methods.

2.5.1. Mathematical background of four vectors

Revisiting manifolds and charts will allow us to develop a proper notion of four vectors.
So let M be a manifold. A chart x is a local diffeomorphism x : Ux ⊂ M → Vx ⊂ Rn.
For simplicity we say Ux = M and Vx = Rn, as this holds for affine coordinates. Since
Rn has a natural basis, one can define coordinate functions xi by canonical projection:
xi = πi ◦ x. The canonical projection is exactly what one would expect:

πi

(∑
i

viei

)
= vi .

x

R2

S2

Figure 2.3.

Using passive transformations means to choose
a second chart y. By definition there is a map
connecting the coefficients of a point p:

piy
!= Ψi(x(p)) ⇔ πi ◦ y = πi ◦Ψ ◦ x

⇔ Ψ = y ◦ x−1 .

For the context of Lorentz transformations we can
assume Ψ to be linear, i.e. yi = ∑

j Ψi
jx
j:

∂

∂xj
=
∑
i

∂yi

∂xj
∂

∂yi
=
∑
i

∂

∂xj

(∑
`

Ψi
`y
`

)
∂

∂yi
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=
∑
i

δj`Ψi
`

∂

∂yi
=
∑
i

Ψi
j

∂

∂yi
.

Let v be a tangent vector with coefficients vjx, i.e.
v = ∑

j v
j
x
∂
∂xj

. In the case of linear Ψ these coefficients transform like the coefficients of
points p ∈M :

v =
∑
j

vjx
∂

∂xj
=
∑
i,j

vjxΨi
j

∂

∂yi
=
∑
i

∑
j

Ψi
jv
j
x

 ∂

∂yi
!=
∑
i

viy
∂

∂yi
.

Thus, for linear transition functions Ψ, coordinate functions and coordinates of tangent
vectors transform alike:

yi =
∑
j

Ψi
j x

j and viy =
∑
j

Ψi
j v

j
x

Remark 2.5.1.
Acceleration cannot be defined by a second derivation of parameters. One reason
is, that the acceleration is not independent of the choice of coordinates. In physics,
there is a way to circumvent that obstacle, by differentiation of basis vectors.
This however is not possible in general (an affine structure is needed). The
invariant definition (via connection) is the covariant derivative. In the case of
affine coordinates and Minkowski metric, one can show, that the usual definition
holds:5

aµ(s) = d2

dt2
Γµ(s)

5See remark C.4.4 for the proof.
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2.5.2. Four vectors and kinematics

Definition 2.5.2.
Let q be an event in M and I an inertial system. The four position X of q is
the coordinate representation of q: Xµ = xµ(q).

Since the components of four position are connected to inertial systems, there is a
distinction between time and space components. The zeroth component is in time
direction, whereas the latter three are the usual position in space. In that sense, it is
convenient to write

X =
(
x0(p)
~x(p)

)
.

Note, that some authors write X for four position. In the mathematical digression, we
discovered, that the vector of coordinates transforms like the coefficients of tangent
vectors (at least for linear transformations). These objects are called contravariant
and get upper indices. Dual objects, i.e. differential forms, which transform by the
transposed matrix, are called covariant and get lower indices.6 In case of covariance
the notation of some authors is X. We will not adopt that notation. To mark the tuple
of spacial components, we will write ~X anyhow.
Most objects exist over some period of time, describing a curve in spacetime (not

necessarily in space). Such a curve Γ: I ⊂ R→M is called world line of that object.
A parametrization defines a four position depending upon a parameter s 7→ X(s).

Our analysis of Lorentz boosts has been constrained to one dimension so far. Observ-
ing, that there are no spacial effects orthogonal to the boost velocity, separating ~x(s)
in parallel ~x‖(s) and orthogonal components ~x⊥(s) allows to handle general Lorentz
boosts:

(
x′0(s)
~x ′(s)

)
=
(

γ · (x0(s)− 〈~β, ~x‖(s)〉)
γ · (~x‖(s)− ~βx0(s)) + ~x⊥(s)

)
with

~x‖(s) = 〈 ~x(s),~v〉
〈~v,~v〉 ~v

~x⊥(s) = ~x(s)− ~x‖(s)
.

(2.1)

In the above transformation we also introduced the β-factor ~β = ~v
c
. Note, that:

〈~β, ~x‖(s)〉 = 1
c

〈
~v,
〈 ~x(s), ~v〉
〈~v,~v〉

~v

〉
= 〈

~x(s), ~v〉
c · 〈~v,~v〉

〈~v,~v〉 = 〈
~x(s), ~v〉
c

.

Remark 2.5.3.
The curve parameter is invariant under Lorentz transformations, unlike the time
coordinate x0(s). It is however possible for one inertial system, to identify the
parameter as time, if x0(s) = s. A natural, yet not necessary, choice for the
parameter is the proper time τ .

6Informally, theories are also called covariant, when invariance (e.g. of equations) is meant.



2.5. Dynamics in Minkowski spacetime (and four vectors) 15

Definition 2.5.4.
Let Γ(τ) be a curve in M parametrized by the proper time τ of the world line.
The four velocity is the tangent vector of Γ(τ) with the following coordinate
representation:

Uµ(τ) = dxµ
(
d

dτ
Γ(τ)

)
.

Accordingly, the four acceleration is the second derivative of Γ with the follow-
ing coordinate representation:

Aµ(τ) = dxµ
(
d2

dτ 2 Γ(τ)
)

= d

dτ
Uµ(τ) .

2.5.3. Invariant description of velocity

In the definition above, we used the textbook convention for the parameter to be the
proper time. To develop a deeper understanding of the theory, we present the subject
in a more general formulation.
A curve is a map Γ: I ⊂ R→ M , mapping the parameter s to a point Γ(s) on M .

The tangent vector d
ds

Γ(s) is independent of coordinates. A coordinate parametrization
defines functions fµx : R→ R such that:

Xµ(s) := xµ(Γ(s)) = fµx (s) .

Locally there are inverse functions gµx such that gµx ◦ fµx = IdR. In the physical context,
we can assume f 0

x to be bijective, that is time does always flow in one direction. Thus
g0
x does always exist. In classical mechanics, the velocity is defined by ~v(t) = d

dt
~x(t). In

special relativity this translates to7:

vi(s)
c

:= d

dX0(s)X
i(s) = d

df 0
x(s)f

i
x(g0

x(f 0
x(s)))

=
(
f ix
)′

(g0
x(f 0

x(s))) · d
dy
g0
x(y)

∣∣∣∣∣
y=f0

x(s)

=
(
f ix
)′

(s) ·
(
g0
x

)′
(f 0
x(s))

= d

ds
X i(s) ·

(
g0
x

)′
(f 0
x(s))

Here we did not use more than the usual chain rule and plugging in our definitions.
Yet this term does not appear initially in the tangent vector. However, we can simply
divide by the right factor for that matter:

d

ds
X i(s) = vi(s)

c
· d
ds
X0(s)

7Note, that d
dx0 = 1

c
d
dt holds, by the same reasoning as below.
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Proof 2.5.5.
To get the result we used the theorem about inverse functions and differentiations,
which is:

d

dx
f−1(x) = 1

d
dy
f(y)|y=f−1(x)

.

Using, that we defined (f 0
x)−1 = g0

x and f 0
x = X0 allows us to write:

1
(g0
x)′(f 0

x(s)) = 1
d
dy
g0
x(y)|y=(g0

x)−1(s)
= d

ds
(g0
x)−1(s) = d

ds
f 0
x(s)

= d

ds
X0(s) .

Remark 2.5.6 (about sloppy maths in textbooks).
What we have proven so far, is written down in text books in a rather sloppy way,
namely in expanding the differential fraction:

dX i(s)
ds

= dX0(s)
ds

dX i(s)
dX0(s) .

The problem of the usage of this formula (which is indeed correct) is, that one does
not check, or even see, the conditions on the function X0 to be a diffeomorphism
(bijection that is differentiable with differentiable inverse).

To summarize our efforts, we state the results as a theorem:

Theorem 2.5.7.
The four velocity (with general parameter) has the following components:(

U0(s)
~U(s)

)
= d

ds

(
X0(s)
~X(s)

)
=
( d

ds
X0(s)

d
ds
X0(s) · vi(s)

c

)
,

where ~v(s) is the classical three velocity, that would be measured in the inertial
system.

~x

ct X(τ)
cτ

~x ′

Figure 2.4.

As we have seen, the proper time is not necessary for the
relativistic description. Nonetheless, using the proper
time as parameter allows to write dynamical equations
(involving mass and energy). The world line may de-
scribe accelerated motion. So there is no inertial system
for the world line. To solve this problem one defines
local inertial systems, for each point of the world line,
called instantaneous rest frames. As illustrated in
the figure, the world line always stays in the light cone.
As tangent vector the, four velocity is a time like
vector.
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To find the connection between four and three vectors, we need to find the relation
between τ and t. Using theorem 2.3.1 we find:

dt(τ)
dτ

= γ(‖~v(τ)‖) .

It will also be important to know dτ
dt
. Using the theorem about inverse functions and

differentiations yields:

d

dt
τ(t) = 1

dt(τ)
dτ

∣∣∣
τ=t(τ)

= 1
γ(‖~v(t(τ))‖) =: 1

γ(‖~v(t)‖) .

Lemma 2.5.8.
The components of the four velocity are

(
U0(τ)
~U(τ)

)
=
(

γ(τ)c
γ(τ)~v(τ)

)
.

Proof 2.5.9.
It is sufficient to notice that X0(τ) = c · t(τ). The rest follows from theorem
2.5.7.

One can show further results, like the three velocity addition theorem, or the components
of four acceleration in terms of three acceleration. We skip this here, but mention, that
A(τ) = (0,~a(τ)) holds in instantaneous rest frames.

Lemma 2.5.10.
For any four velocity g(U,U) = −c2 holds. Also, the four velocity is directed in
positive time direction.

Proof 2.5.11.

g(U,U) = −(U0)2 +
∑
i

(U i)2 = −γ2c2 + γ2‖~v‖2 = −c2γ2
(

1− ‖~v‖
2

c2

)
= −c2 ,

c > 0 , γ > 0 ⇒ U0 > 0 .

2.5.4. Four vectors and dynamics

Definition 2.5.12.
Let m be the mass of an object in it’s rest frame, called proper mass or rest
mass. The four momentum is defined as P = m · U . The four force is
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accordingly defined as F = d
dτ
U .

Indeed, up to a γ, the space component of the four momentum is the classical
momentum. The zeroth component of P has the dimension Energy over velocity. Our
assumption is, that the term describes the energy of the particle E/c. Additionally we
define the relativistic momentum by ~pγ = γm~v. For that reason, the term γm is
called relativistic mass. It is the mass, associated to classical momentum, an observer
in a different inertial system observes. Here we skip the derivation and focus on the
consequences.

Theorem 2.5.13.
From our assumptions P 0 = E

c
and P i = piγ, the Energy-momentum-relation

follows directly:
E2 = m2c4 + ‖~pγ‖2c2 .

Proof 2.5.14.
With the initial definition P = mU we derive:

g(P, P ) = −(mγc)2 +m2γ2‖~v‖2 = m2c2γ2
(

1− ‖~v‖
2

c2

)
= m2c2 .

The assumptions on the other hand yield:

m2c2 = g(P, P ) = −E
2

c2 + ‖~pγ‖2 ⇔ E2 = m2c4 + ‖~pγ‖2c2 .

2.6. The geometry of proper time

Although we have already defined the proper time, it is worthwhile to elaborate on the
subtleties of the concept, especially in the context of accelerated motion. As defined
before, the proper time τ is the time in a co-moving system. A more intuitive description
would be, that the proper time is the time shown on a clock that is fixed to the object
of interest. Note, that the system is not inertial in case of accelerated motion. The trick
one uses is instantaneous rest frames. Fixing a specific value τ0 defines a spacetime point
as origin of the instantaneous inertial frame I ′ and a constant (for infinitesimal time)
velocity ~vτ0 ≡ ~v0 with respect to another valid inertial system I. More mathematically
rigorous, we are interested in the coordinates of the tangent vector of the curve. The
rest frame is characterized by the fact, that the tangent vector of the motion curve
is always proportional to ∂

∂x′0
. Graphically this can be seen in figure 2.4, where the

x′0 = cτ -axis is the tangent vector of X(τ). With the help of Lemma 2.5.10 we can be
more specific. Let Γ(τ) be a time like curve, then we have:

g(Γ̇(τ0), Γ̇(τ0)) = −c2 Γ̇(τ0) = h · ∂x′0|τ0 and g(∂x′0 |τ0 , ∂x′0|τ0) = −1 ,
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cτ−1

cτ0

ct

x

cτ−1

cτ−0.5

cτ0

cτ0.5

ct

x

ct

x

Figure 2.5.: Visualization of the arc-length formula for proper time. Choosing a discretization {τj}
allows to approximate the proper time along the blue curve. To do so, the time coordinate of Γ(τj) in
rest system j − 1 is determined, by projection (orange dashed line). Adding up these time components,∑
j ∆τj , approximates the proper time along the curve.

⇒ −c2 = g(Γ̇(τ0), Γ̇(τ0)) = h2g(∂x′0|τ0 , ∂x′0|τ0) ⇔ h = c .

The goal of this section is to find a formula to calculate the time that has passed on
the co-moving clock between two spacetime events. Before passing to the proper limit,
i.e. what one conceptually does, is to sum over a discretized set of instantaneous rest
frames. So, let {τj} be a discretization of the proper time, defining points Γ(τi) on
the curve. Let Ij be the instantaneous rest frames of these curves. The proper time
between Γ(τj−1) and Γ(τj), with the additional factor c of course, can be approximated
by the x′0-coordinate of Γ(τj) in the system Ij−1; (see figure 2.5 for an illustration). In
the limit, we can write:

x′0|j−1(Γ(τj)) ' c · (τj − τj−1) = c ·∆τj .

Indeed, using Γ̇(τ) = c · ∂x′0 yields:

d

dτ

∣∣∣∣∣
τj−1

x′0|j−1(Γ(τj)) = dx′0|j−1
(
Γ̇(τj−1)

)
= dx′0|j−1 (c · ∂x′0|j−1) = c .

Thus the proper time along the curve τA,B times c is:

c · τA,B =
∑
j

x′0|j−1(Γ(τj)) '
∑
j

c∆τj · 1 = c
∑
j

∆τj
√
−g(∂x′0|j, ∂x′0|j)

=
∑
j

∆τj
√
−g

(
Γ̇(τj), Γ̇(τj)

)
'
∫ τB

τA

√
−g

(
Γ̇(τ), Γ̇(τ)

)
dτ = L−g(Γ, τA, τB) .

With L−g(Γ, τA, τB) we denote the length of Γ between Γ(τA) and Γ(τB) with respect
to the negative Minkowski metric −g.
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Motivated by that equation, which could be written more rigorously using limits, we
define:

Definition 2.6.1.
The proper time interval τA,B, a clock moving along the curve Γ: R → M
measures between the spacetime events Γ(τA) and Γ(τB), is defined as

τA,B = 1
c
L−g(Γ, τA, τB) .

Lemma 2.6.2.
For the curve of (accelerated) motion, the inertial time differential dt and the
proper time differential dτ are related by

dτ(t) = 1
γ(t) dt .

Proof 2.6.3.
In general the coordinate functions of inertial systems are related by affine trans-
formations, that is:

x′µ = Λµ
νx

ν +X0 .

For the coordinate differentials we get:

dx′µ = d (Λµ
νx

ν +X0) = Λµ
νdx

ν .

From (2.1) we find the expression for x′0 = cτ , if we fix a time t, so that the rest
frame can be pretended to be inertial:

c dτ = γ(‖~v(t)‖)
(
c dt− 1

c

∑
i

vi(t) dxi(t)
)
.

We are only interested in the curve of motion (i.e. a one dimensional sub manifold).
Thus the coordinates xµ have to describe the position of the curve at the time t,
that is xµ ≡ xi(t). At this point we also want to parametrize the proper time τ by
the inertial frame time t. This can always be done since any point on the curve
corresponds to a proper time value τ . Also for real motion, the inertial time value
is the unique projection of the curve on the x0-axis.
With the classical definition of velocity in an inertial system we find:

dτ(t) = γ(‖~v(t)‖)
(
dt− 1

c2

∑
i

vi(t) ∂txi(t) dt
)

= γ(‖~v(t)‖)
(

1− 1
c2

∑
i

(vi(t))2
)
dt

= γ(‖~v(t)‖) 1
(γ(‖~v(t)‖))2 dt = 1

γ(‖~v(t)‖) dt .
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For the purpose of integration, we want to investigate the reparametrization of τ by
t further. We begin, by noticing that the curve Γ and the inertial time axis T both
are one dimensional manifolds. The map Ψ, that transforms the proper time into the
inertial time, thus is, for physically reasonable motion, a diffeomorphism

Ψ: Γ→ T .

The reparametrized one form dτ(t) is then the pullback of dτ by Ψ−1: dτ(t) = (Ψ−1)∗dτ .
The physical meaning of Ψ is far simpler than the mathematical formulation. Given

a clock that moves in spacetime, for example. If the clock passes a specific position the
time it shows will be noted, as well as the time on the clock of the observer. Let these
be τ0 for the moving clock and t0 for the observer’s clock. The relation between these
times is Ψ(τ0) = t0.

Theorem 2.6.4 (Formula for proper time).
The proper time of a moving clock, between two spacetime events A = Γ(τA) and
B = Γ(τB) is

τA,B =
∫ τB

τA
dτ =

∫ tB

tA

√
1− ‖~v(t)‖2/c2 dt .

Proof 2.6.5.
The proper time interval is defined (Definition 2.6.1) to be the length of the curve
divided by c. Let X(τ) be any parametrization of Γ over τ , with lemma 2.5.10 we
get:

τA,B = 1
c
L−g(Γ, τA, τB) = 1

c

∫ τB

τA

√
−g

(
Ẋ(τ), Ẋ(τ)

)
dτ

= 1
c

∫ τB

τA

√
c2 dτ =

∫ τB

τA
dτ =

∫ τB

τA
Ψ∗(Ψ−1)∗dτ =

∫ Ψ(τB)

Ψ(τA)
dτ(t)

=
∫ tB

tA

√
1− ‖~v(t)‖2/c2 dt .



3
Einstein field equations
General Relativity is a theory that formulates gravity as curvature of spacetime. Behind this
geometrical notion is a rather simple principle, that can be experienced every day, In this chapter
we present the postulates of general relativity and give a brief outlook how the field equations can
be derived form an action principle.

3.1. Physical motivation

As for any physical theory, there is no way to prove the postulates. All we can do, is to
compare calculations to experiment, hoping for agreement. In that sense, we have some
freedom, in where to start for the postulates. We could postulate principles, which lead
to the field equations, as in [Car97]. On the other hand, we can start from the field
equations, like in quantum mechanics with the Schrödinger equation, as its implications
are tested very well and do agree with experiments.

Both approaches have their merits. The first, allowing for a deep intuition but using
additional assumptions, that need not be physical principles, leading astray further
research. The second, delivering ready equations, but overlooking deeper principles
which could allow for an even more general theory.

In fact, while the equations are tested very well, the extension of the equivalence
principle to non-gravitational effects is still under debate. For that reason, we will start
with the postulates, that have proven to yield results in agreement with experiments

3.1.1. The postulates of general relativity

In this subsection we will follow the reasoning of [HE75, chapter 3].

Postulate 0: Configuration space

The configuration space, that is the space of all events, is taken to be a four di-
mensional pseudo Riemannian C∞-manifold (M, g) with Lorentzian metric g. Be-
ing Lorentzian means, that there are local coordinates for each p ∈ M such that
(gµν(p)) = diag(−1, 1, 1, 1).

By the meaning we ascribe points of M , all we can ever be aware of, has to be in the
same connected component as ourselves. Hence we may assume the manifold to be at
least connected.

Postulate 1: Locality

As special case of general relativity in the absence of all matter, the causality of special
relativity, we have encountered in section 2.4, has to be present in general relativity as
well. The postulate of locality is adopted as follow:
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Let U ⊂M be a geodesically convex subset and p, q ∈ U be two events. Information
can only be transferred between these events, if there is a C1 curve connecting p and q,
such that every tangent vector of the curve is time-like or light-like.
The terminology above has exactly the same meaning as in special relativity. A

tangent vector v ∈ TpM is time-like, if g(v, v) < 0, space-like if g(v, v) > 0 and
light-like or called null-vector if g(v, v) = 0. A geodesic is called accordingly called
time-like, space-like or null-geodesic, if every tangent vector is time-like, space-like or
null-geodesic. Within this terminology we have already formulated, that light travels
along null-geodesics (light-like geodesics).

Postulate 2: Local energy-momentum-conservation

The single most fundamental principle of all of physics is energy-conservation. Unless
proven wrong by compelling experimental evidence in the future, no physical theory
that violates energy conservation fundamentally is accepted today. Together with
momentum conservation we thus have to postulate these conservations, at least locally.

To state the postulate more formal, we assume that to every matter field there exists
a symmetric tensor of rank 2, called the energy-momentum tensor T , with the
following properties:

i) T ≡ 0 on U , for U ⊂M open, if and only if the matter fields vanish on U .

ii) div T ≡ 0.

The first condition expresses that every matter field has a certain positive energy in
the sense that there is no negative matter. This does not mean, that there cannot
be chosen a gauge for potentials such that there are negative numbers, but that the
equivalent matter to the energy is positive.1 The second condition can be understood
as the conservation law. In coordinates it reads T µν;ν ≡ 0.

Postulate 3: Field equations

Gravitation is a geometrical effect rather than a force. Let R be the Ricci tensor, S be
the scalar curvature and T be the energy-momentum tensor. In SI-units (Gravitation
constant G and cosmological constant Λ) the Einstein field equations are: [Fli16,
compare eq. (21.30)]

R− (1
2S − Λ)g = 8πG

c4 T . (3.1)

3.1.2. Equivalence principle

The postulates of the previous subsection demand that gravitation is a geometrical effect.
Since all other physical interactions are described by fields, such a formulation is rather
obscure at first. However, a simple observation Einstein made about the similarity
between gravitation and acceleration can motivate the geometrical interpretation of
gravity. The following explications is based on [Car97, chapter 4]:

1So far there has been no evidence of repulsive matter, as is the case for charges.
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In the first chapter the concept of mass was treated as if it were a trivial one. However,
comparing the classical definition of force with the gravitational force reveals, that there
are three different concepts of mass:

mI · I1

(
d2

dt2
γ(t)

)
= − GMm

r2
p(γ(t))(drp)γ(t) .

• The mass mI , called inertial mass, connects the acceleration with the force

• The massesM and m, called gravitational masses, connect the concept of mass
with gravitation. These gravitational masses can be distinguished further:

– The gravitational mass M is called active, since it creates the gravitational
field.

– The gravitational massm is called passive, since it reacts to the gravitational
field.

The distinction between active and passive gravitational masses is not necessary in
Newton’s theory, as both masses can be exchanged. By the third law (actio = reactio)
the force that m excerts on M is Fm on M = −FM on m. Yet Newton’s theory allows for
different inertial gravitational masses. However, all experimental evidence hints to the
equivalence of both masses so far, called weak equivalence principal.

In the theory of general relativity, Einstein extended the weak equivalence principle.
He assumed that all dynamical laws in a small free falling system are equivalent to the
laws in a system in gravity-free space. Also, accelerated small systems are equivalent
to small systems in a gravitational field. These equivalences are called equivalence
principle.

~χA

B

Figure 3.1.

The auxiliary “small” for systems is important for
gravitational systems, even in Newtonian gravity. For
example consider two systems A and B in free fall.
Each of these systems for itself is equivalent to a system
in gravitation free space. However considering both
systems at once, the distance between them decreases
over time acceleratingly. There seems to be an force
between the systems, called tidal force. If A is at
position p and B at position p+ ~χ, and we assume χ to
be small, we can evaluate the tidal acceleration easily:

1) d2

dt2
pi = − ∂

∂xi
Φ(p)

2) d2

dt2
(p+ ~χ)i = − ∂

∂xi
Φ(p+ ~χ) = − ∂

∂xi
Φ(p)−

3∑
j=1

∂2

∂xi∂xj
Φ(p)χj +O(χ2) .

1)− 2) ⇒ d2

dt2
χi = −

3∑
j=1

∂2

∂xi∂xj
Φ(p)χj +O(χ2)

It should be mentioned that, for simplicity, we calculated in terms of coefficients here.2

2Notice that the positioning of the indices is already according to Ricci calculus. To compare forms
with vectors we have also used ∂xi = gijdx

j and gij = δij .
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3.1.3. Equivalence principle and curvature

From the equivalence principle it might not be clear, how it connects to curved space.
To illustrate that, we use an example, that is not necessarily a physical solution of the
Einstein equations, but shows the concept clearly.

Assuming a huge mass at position P and a comparably small mass at position Q. Over
time, the small mass will move towards the large mass, accelerating over time, while
the large mass rests by assumption. Geometrically, the world line of the small mass is a
straight line, defining a geodesic in a flat spacetime, whilst the world line of the small
mass is curved. Taking the equivalence principle seriously, we have put no constraints
on the masses, meaning they should be inertial systems (at least locally). This can be
realized by choosing a metric g such that both world lines are Riemannian geodesics.
Reformulated geometrically, we chose a curved space such that the world lines are locally
as straight as possible, i.e. ∇γ̇(t)

˙γ(t) = 0, with respect to the Levi-Civita-connection.
This point of view is visualized in figure 3.2.

x1

t

P Q P Q

Figure 3.2.: Visualization of curvature instead of accelerated motion.

3.2. Variational principle and energy-momentum
tensor

So far, we have not addressed, how to obtain energy-momentum tensors. Of course,
in simple situations they can be guessed from classical physics by substituting partial
derivatives with covariant derivatives, also called comma-to-semicolon rule. However
the conditions imposed on the energy-momentum tensor may not be enough to uniquely
determine it.

3.2.1. Einstein-Hilbert-Action review

The vacuum Einstein field equations can be derived from an action principle, the so
called Einstein-Hilbert action, with a variation of the metric tensor coefficients gµν .
A derivation can be found in [Car97, section 4]. We will only present the results here:3

SEH =
∫
U
LEH

√
|g| dx4 with LEH = κ(S − 2Λ) .

3In the notation of this document adding information from [HE75, eq. (3.16)].
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To obtain the field equations in SI-units, the constant is given by κ =
(

16πG
c4

)−1
.

Assuming that variations on the boundary vanish, the functional derivative is given by

δSEH
δgµν

=
√
|g| κ(Rµν −

1
2(S − 2Λ)gµν) .

Of cause one could use the covariant Euler-Lagrange equations for a rigorous derivation,
which would result in a lengthy calculation however, as the scalar curvature written in
terms of the metric is a long expression.

Anyway, the condition δSEH(gαβ; gµν) = 0 is equivalent to δSEH
δgµν

= 0 resulting in the
vacuum field equations:

κ(Rµν − 1
2(S − 2Λ)gµν) = 0 .

3.2.2. Energy-momentum tensor

The Einstein-Hilbert Lagrange-density we used above differs from [HE75, eq. (3.16)], as
we have ignored the matter Lagrange-density so far. As can be seen in [HE75, section
3.3] the energy-momentum tensor can be obtained from a variational principle, if the
field equations correspond to that action. We have reversed the order compared to
[HE75] for the following pedagogical reason: Noticing that the vacuum Einstein field
equations can be derived from an action principle, which can be taken as an equivalent
postulate, it can be assumed that there is an action principle for the full field equations.
To see, how this is done, we will follow the reasoning of [HE75].

Assuming the matter/energy can be described by a field φa...bc...d =: φIJ with associate
matter Lagrange-density LM we define the Einstein-Hilbert-Matter action as
follows:

SEHM(g) =
∫
U

(LEH + LM)
√
|g| dx4 .

Using the linearity of the Fréchet-derivative and of integration, and assuming vanishing
variations on the boundary, we see that

δ(SEHM , gµν) = δg

∫
U
LEH

√
|g| dx4 + δg

∫
U
LM

√
|g| dx4 != 0 ,

⇔ 1√
|g|
δSEH
δgµν

= κ(Rµν −
1
2(S − 2Λ)gµν) = Tµν = − 1√

|g|
δSM
δgµν

where δg denotes the variation of the integral-functional in direction gµν . Thus, we have
found an expression for the energy-momentum tensor:

Tµν = − 1√
|g|
δSM
δgµν

.

A consequence of this definition of the energy momentum tensor is that it has to
divergence free, if Rµν − 1

2(S − 2Λ)gµν is divergence free.

Lemma 3.2.1.
The Einstein tensor G = R− 1

2Sg is divergence free.
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Proof 3.2.2.
Choosing an arbitrary chart allows to use the Contracted Bianchi identity in the
easier formR ν

µν; = 1
2S;µ. By the metric compatibility of the Levi-Civita-connection

the metric is also divergence free: gµν;µ = 0. It follows that:

G ν
µν; = R ν

µν; − 1
2S

ν
; gµν = 1

2S;µ − 1
2S;µ = 0 .

Since we have not used any special choice of coordinates, this result does not
depend on coordinates.4

As a result of this lemma, and since the metric is divergence free as well, the energy-
momentum tensor has to be divergence free as well:

κ(R− 1
2(S − 2Λ)g) = T ⇒ 0 = κ · div(R− 1

2(S − 2Λ)g) = div T .

4We could have used the coordinate free version of div from page 89 as well.



4
Gravitational waves in linear
approximation
This chapter considers a linearization of gravitation and gravitational waves in this limit. This
chapter follows [Car97, chapter 6] closely but is not complete.

4.1. Linerized gravitation

Gravitational waves are a general property of the field equations. Yet even in the linear
approximation they do appear, and are also easier to understand. So we might as well
restrict our attention to the linear limit we are to develop.

4.1.1. Linear limit

Linear limit means that the metric g can be written as:

g = η + h ,

where η is the flat Minkowski metric and h a perturbation. For the linearization it is
assumed that the perturbation is small.

Remark 4.1.1.
We do not care about the precise meaning of small, but only want to neglect
quadratic terms (and higher order terms) of h to get a linear theory. In fact we are
going to use the coordinate expression gµν = ηµν + hµν , which need not be unique
nor existing. Furthermore we will assume to have the freedom to choose the
coordinates in a particular way. A part of these assumptions is addressed in in the
classical literature by checking compatibility of the made assumptions and checking
coordinate transformations (called gauge invariance in the literature). However,
the very existence of the demanded coordinates remains to be proven, specifying
also a chart domain. There do exist mathematical treatments of linearized gravity,
see [SW12, section 7.6] for example. For that reason we will not address the
aforementioned issues and assume everything to work out.

As a warning, in this chapter, raising and lowering indices is done by us-
ing η. The reason will become clear momentarily. If we need the proper
isomorphisms induced by g, we underline the expression, e.g. vµ.
We start by finding an expression for gµν , which is defined to be the inverse matrix

of gµν , in first order of h. We make the guess, that gµν ≈ ηµν − hµν will work, and
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calculate:

(ηµν − hµν)gνρ = (ηµνhµν)(ηνρ + hνρ) = ηµνηνρ + ηµνhνρ − hµνηνρ +O(h2)
≈ ηµνηνρ + ηµνhνρ − hµνηνρ = δµρ + hµρ − hµρ = δµρ .

Hence the guess of gµν was correct. We observe, that all quantities that are derived
from h, i.e. contain only terms that are of linear order in h, can be transformed by η
instead of g, if quadratic and higher order terms are to be neglected. Let v = v(h) be a
vector field derived from h:

vµ = gµνvν = ηµνvν + hµνvν = vµ +O(h2) ≈ vµ .

Since the Minkowski metric is constant, the Christoffel symbols are (ignoring quadratic
order):

Γρµν = 1
2η

ρλ(∂µhνλ + ∂νhλµ − ∂λhµν)

We observe, that the Christoffel symbols are derived only from h, and thus all quantities
concerned with curvature can be raised and lowered by η.
With corollary C.5.2 we observe the general structure of the coefficients of the

Riemann tensor to be partial derivatives and products of the Christoffel symbols. Since
products would be of order h2 we obtain:

R `
ijk = ∂iΓ`jk − ∂jΓ`ik .

It follows that:

Rijk` = 1
2(∂k∂ih`j + ∂`∂jhik − ∂`∂ihjk − ∂k∂jh`i) .

The Ricci tensor from subsection C.5.3 is the contraction of the first and last index
(relabeling the indices to match [Car97]):

Rµν = 1
2(∂σ∂νhσµ + ∂σ∂µh

σ
ν − ∂µ∂νhσσ −�hµν) ,

where � = ∂σ∂
σ = ∂2

x + ∂2
y + ∂2

z − 1
c2∂

2
t is the D’Alembert operator. For the scalar

curvature one finds:
S = ∂µ∂νh

µν −�hσσ .

Putting all together in (3.1) (without cosmological constant) yields the linearized
Einstein field equations:

8πG
c4 Tµν = 1

2
(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νhσσ −�hµν − ηµν∂µ∂νhµν + ηµν�h

σ
σ

)
.

(4.1)

4.1.2. Harmonic coordinates and trace reversed perturbation

The linear field equations can be simplified further by choosing a particular coordinate
system. To define these coordinates we need a new operator.
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Definition 4.1.2.
The covariant Hessian ∇2T of a tensor field T is defined by

∇2T (X, Y ) = ∇Y (∇XT )

for vector fields X, Y .

In the case of functions, using theorem C.2.24, we see that:

∇2f(X, Y ) = ∇Y (∇Xf)∇Y (X(f)) = Y (X(f))− (∇YX)(f) .

In coordinates with X = Xν∂ν and Y = Y µ∂µ this reads:

∇2f(X, Y ) =
(
∂µ∂νf − Γσµν∂σf

)
Y µXµ

leading to the local coordinate expression of ∇2f :

∇2f =
(
∂µ∂νf − Γσµν∂σf

)
dxν ⊗ dxµ .

Definition 4.1.3.
The Laplace-Beltrami operator is defined by

∆f = tr(∇2f) .

Remark 4.1.4.
For the Minkowski metric the Laplace-Beltrami operator is the D’Alembert
operator. In case of the Euclidean metric on R3 it is the classical Laplace
operator.

In coordinates the Laplace-Beltrami operator can be calculated as follows:

∆f = tr
((
∂µ∂νf − Γσµν∂σf

)
dxν ⊗ dxµ

)
=
(
∂µ∂νf − Γσµν∂σf

)
dxν(gµρ∂ρ)

= gµρ
(
∂µ∂νf − Γσµν∂σf

)
δνρ = gµν

(
∂µ∂νf − Γσµν∂σf

)

∆f = ∂µ∂µf − gµνΓσµν∂σf .

Definition 4.1.5.
Coordinates (xµ) that satisfy ∆xµ = 0 are called harmonic coordinates.

Harmonic coordinates have a special consequence for the Christoffel symbols:

Corollary 4.1.6.
Coordinates (xµ) are harmonic, if and only if Γµσν = 0.
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Proof 4.1.7.
0 = ∆xµ = ∂σ∂σx

µ − gσνΓρσν∂ρxµ = ∂µδµσ − gσνΓρσνδµρ = gσνΓµσν
⇔ 0 = Γµσν .

Applying the choice of harmonic coordinates to the weak field approximation, since ηρλ
is an invertible matrix, this yields:

Γρµν = 1
2η

ρλ(∂µhνλ + ∂νhλµ − ∂λhµν) = 0

⇔ 1
2(∂µhνλ + ∂νhλµ − ∂λhµν) = 0

⇔ 1
2η

µν(∂µhνλ + ∂νhλµ − ∂λhµν) = ∂µh
µ
λ −

1
2∂λh

µ
µ = 0 .

Calculating the Ricci coefficients in these coordinates yields:

Rµν = 1
2(∂σ∂νhσµ + ∂σ∂µh

σ
ν − ∂µ∂νhσσ −�hµν)

= 1
2(1

2∂ν∂µh
σ
σ + 1

2∂µ∂νh
σ
σ − ∂µ∂νhσσ −�hµν)

= −�hµν .

The scalar curvature becomes S = −�hσσ. Plugging in into the field equations yields:

�hµν −
1
2ηµν�h

σ
σ = −16πG

c4 Tµν .

Introducing a new form for the perturbation, hµν := hµν − 1
2ηµνh

σ
σ, which is called

trace reverse leads to the simple form:

�hµν = −16πG
c4 Tµν . (4.2)

With ηµν = ηµληλν = δµν and using the harmonic condition for h we calculate:

∂µh
µ

ν = ∂µη
µλhλν = ∂µη

µλ(hλν − 1
2ηλνh

σ
σ) = ∂µh

µ
ν − 1

2η
µ
ν∂µh

σ
σ

= ∂µh
µ
ν − δµν ∂σhσµ = ∂µh

µ
ν − ∂µhµν = 0 .

Thus for h the harmonic condition reads

∂µh
µ

ν = 0 ⇔ ∂µh
µν = 0 .

Remark 4.1.8.
The name trace reverse comes from the property, that hµµ = −hµµ:

h
ν

ν = ηµνhµν − 1
2η

µνηµνh
σ
σ = hνν −

1
2

( 3∑
ν=0

δνν

)
hνν = hνν − 2hνν
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= −hνν .

This also allows to write down the inverse equation:

hµν = hµν − 1
2ηµνh

σ

σ .

4.2. Propagation of free waves

Free wave implies that there is no matter present. This means, that T = 0, such that
the equation for the trace reversed perturbation becomes

�hµν = 0 .

As usual on chooses the ansatz

hµν = Cµνe
ikσxσ ,

whew C is a constant symmetric (0, 2) tensor. Plugging this ansatz into the wave
equation shows, that the wave vector has to be light like, i.e. kσkσ = 0:

0 = �hµν = �Cµνeikσx
σ = Cµνη

ρσ∂ρ∂σe
ikσxσ = Cµνη

ρσkρkσe
ikσxσ = kσk

σhµν .

⇒ kσk
σ = 0 .

From the wave equation, as well as the fact that for non trivial perturbations the wave
vectors have to be light like, we deduce that the perturbations propagates with the
speed of light, hence a gravitational wave. From the four momentum p = (E, p1, . . . , p3)
it we know that k = (ω, k1, . . . , k3), such that the condition for k can be written:

ω2 =
3∑
j=1

k2
j .

Since we have derived the wave equation in harmonic coordinates, we have to apply the
harmonic condition to h:

0 = ∂µh
µν = ∂µC

µνeikσx
σ

Cµνkµe
ikσxσ ⇒ kµC

µν = 0 ⇔ kµCµν = 0 .

To reduce the degrees of freedom, we note, that harmonic coordinates need not be
unique. This can be seen by observing that the Laplace-Beltrami operator is linear.
Let ξµ be harmonic functions, i.e. ∆ξµ = 0, and (xµ) be harmonic coordinates, then
yµ = xµ + ξµ are also harmonic coordinates.
We assume1 that this freedom allows to find coordinates, such that

Cµ
µ = 0 and C0ν = 0 .

1In [Car97, p. 149] it is tired to be verified. However the proof uses functions for which �ξµ = 0 holds
instead of ∆ξµ = 0. This can be seen by the ansatz for ξµ. The mistake might have happend by
denoting both the Laplace-Beltrami operator and the D’Alembert operator with the same symbol.
Thus the existence of the desired coordinate system remains to be verified.
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Having applied all conditions for Cµν , we are ready to examine the degrees of freedom.
The condition C0ν = 0 together with the symmetry reduce the free coefficients to a
symmetric 3× 3 matrix:

C =


0 0 0 0
0 C11 C12 C13
0 C12 C22 C23
0 C13 C23 C33

 .

As symmetric 3 × 3 matrix there are 3·(3+1)
2 = 6 degrees of freedom. kµCµν = 0 are

three equations (since the first row is zero) and Cµ
µ = 0 is one equation, such that

there are only 2 degrees of freedom, that have a physical relevance. These two degrees
of freedom are the polarizations of the gravitational waves.

The particular choice of coordinates we have made has another beneficial consequence.
Since Cµ

µ = 0 it follows that hµµ = Cµ
µe

ikσxσ = 0 = −hµµ. As a consequence it follows
that:

hµν = hµν .

This is only true in the special coordinates we have chosen to investigate gravitational
waves, accounting for the name radiation coordinates.

(a) +-polarized

(b) ×-polarized

Figure 4.1.: Effect of linearly polarized gravitational waves on particles on a circle.

To investigate the properties of free gravitational waves further, we consider the spacial
case of propagation in x3 direction. In this case the wave vector is k = (ω, 0, 0, ω), since
(k0)2 = ∑

i(ki)2 = (k3)2, and thus k[ = (−ω, 0, 0, ω). From kµCµν = k0C0ν + k3C3ν = 0
and C0ν = 0 it follows that C3ν = Cν3 = 0. Thus, using symmetry and vanishing trace,
we have:

C =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 .

The two coefficients C11 and C12 are the two degrees of freedom, that can be chosen
freely. Take for example two linearly polarized waves, defining C+ by setting C12 = 0
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and C× by setting C11 = 0. Then the perturbations become

h+ = C11e
iω(x3−x0)(dx1 ⊗ dx1 − dx2 ⊗ dx2) ,

h× = C12e
iω(x3−x0)(dx1 ⊗ dx2 + dx2 ⊗ dx1) .

Fixing the coordinate x3, the term eiω(x3−x0) describes an oscillation in time, where
x0 is taken to be the time coordinate. Considering the full metrics g+/× = η + h+/×,
the notation + and × come from the axes along which distances are stretched and
compressed, as can be seen in figure 4.1. As with light waves, there can be circular
polarized waves:

CR = 1√
2

(C+ + iC×) and CL = 1√
2

(C+ − iC×) .

4.3. Radiation of gravitational waves

So far, we have only considered free waves, ignoring the source term. Mathematically
speaking, we have only solved the homogeneous equation. Since the D’Alembert operator
is a linear differential operator with constant coefficients and the background in the
linearized theory is flat, the theory of fundamental solutions can be applied. A formal
introduction would require distribution theory. Thus we will only give the results.

x1

x0

(x0,x)

(xr,y)

Figure 4.2.

A green function2 for the D’Alembert
operator is a function G(x, y), such
that �TG = δx, where TG is the
regular distribution of the function
y 7→ G(x, y) and δx the delta distribu-
tion with pole in x ∈ R4. In the more
common notation of the textbooks
with delta functions, the condition
reads:

�yG(x, y) = δ(y − x).

A property of Green functions is, that
a (weak3) solution of the differential
equation �u = f is given by

u(x) =
∫
R4
G(x, y)f(y) dy4 .

Denoting the spacial parts of x = (x0, x1, x2, x3) by x = (x1, x2, x3), the Green function
of the D’Alembert operator is:

G(x, y) = − 1
4π|x− y|

δ
(
|x− y| − (x0 − y0)

)
Θ(x0 − y0) ,

2The relation between Green functions G(x, y) and regular fundamental solutions g(y) for a linear
differential operator with constant coefficients is g(x − y) = G(x, y). This leads to the notation
G(x− y) in some texts.

3If f is a test function, then differentiability is ensured, and the solution is a proper solution. Otherwise
it is only a solution w.r.t. weak differentiation.
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where we have used the Heaviside function Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0.
A mathematical rigorous derivation takes some two to three pages, depending on the
theoretical background, such that we have just copied it from [Car97].
Since the equation for the trace reversed perturbation (4.2) is coefficient wise, the

Green function theory applies without changes:

hµν(x0,x) = 4G
c4

∫
R4

1
|x− y|

Tµν(y)δ
(
|x− y| − (x0 − y0)

)
Θ(x0 − y0) dy4

= 4G
c4

∫
R3

1
|x− y|

Tµν(x0 − |x− y|,y) dy3 .

In the second line, we have evaluated the time integral with help of the delta
function. The expression xr := x0 − |x− y| is called retarded time. To give the right
interpretation, we choose t = x0

c
as in special relativity. Then the retarded time is

tr = t− |x−y|
c

. Fixing a point (t,x) and choosing a space point y, the retarded time tr
is the time point in the past (since tr ≤ t), when a light ray had to be emitted from y
to reach x at the time t. This means that the point (xr,y) lies on the surface of the
backwards directed light cone. In the integration this means, that only the surface of
the light cone in the past contributes to hµν(x0,x).
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Schwarzschild solution
The previous chapter presented solutions to the linearized field equations. However, from a
theoretical point of view, one might ask, if this is possible for the full equations. Assuming certain
symmetries, there do exist solutions. One such case is the Schwarzschild solution using spherical
symmetry. This solution is discussed thoroughly in the literature and involves lots of tedious
calculations. Here we do not want to copy them (as the reader can find them in any textbook of
his liking) and will only consider results and concepts, choosing the simplest rather than the most
complete approach.

5.1. The Schwarzschild metric

In this section we will motivate the Schwarzschild metric, following [Fli16, section 23].
This is not a formal derivation. However, there do exist derivations (e.g. in [HE75])
that show, that the Schwarzschild metric is the unique spherically symmetric vacuum
solution solution. The condition of staticity, i.e. time independence is not needed in
this case, as it follows from the Birkhoff theorem. Here we will make the assumption
that the metric is static.
Assume, that the energy momentum tensor is static with compact support and

spherically symmetric w.r.t. S2 in space. This means, we are looking for a static metric
in the vacuum (outside of the matter) that is spherical symmetric. Choose coordinates
(τ, ρ, θ, φ), where (ρ, θ, φ) are spherical coordinates. Then we can assume:

g = −f1(ρ)c2dτ ⊗ dτ + f2(ρ)dρ⊗ dρ+ f3(ρ)(dτ ⊗ dρ+ dρ⊗ dτ)
+ f4(ρ)ρ2

(
dθ ⊗ dθ + sin(θ)2dφ⊗ dφ

)
.

Because of the spherical symmetry, the functions fi can only depend on ρ. Also, cross
terms involving the angles are not allowed, as θ → −θ would lead to dθ → −dθ,
violating the spherical symmetry. Choosing coordinates r = ψ(ρ), such that f1(r) = 1
and t = τ + ξ(r), such that the cross terms vanish, the metric can be brought in the so
called standard form for spherically symmetric, isotropic systems:

g = −A(r)c2dt⊗ dt+B(r)dr ⊗ dr + r2
(
dθ ⊗ dθ + sin(θ)2dφ⊗ dφ

)
.

⇒ gµν = diag(−A(r)c2, B(r), r2, r2 sin(θ)2) .
Furthermore, for large r, the spacetime should become flat, since in classical Newtonian
gravity, the gravitational potential converges asymptotically to zero for r → 0. This
means, that for r →∞, it should hold that g → η, where η is the Minkowski metric.
Thus it has to hold that:

A(r) −→ 1 and B(r) −→ 1 for r →∞ .
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As assumed before, the energy momentum tensor has compact support. A solution of
the Einstein field equations outside of the support thus is a vacuum solution. Plugging
in the standard form, and going through a long calculation (Christoffel symbols →
Curvature tensor coefficients → Ricci coefficients and Scalar curvature → solving to
get expressions for A and B) yields the famous Schwarzschild metric:

g = −c2
(

1− rS
r

)
dt⊗ dt+ 1

1− rS
r

dr ⊗ dr + r2dθ ⊗ dθ + r2 sin(θ)2dφ⊗ dφ .

] Here rS is the so called Schwarzschild radius rS = 2GM
c2 . If r approaches the

Schwarzschild radius, the metric becomes singular. A priori, this singularity has no
meaning, as it is only a coordinate singularity, that need not hold for all coordinates.
More physically speaking: For all stars, there is a Schwarzschild radius. However, if it
lies inside the star, the Schwarzschild metric is no longer a solution, as the inside of the
star is not vacuum.

However, if the Schwarzschild radius is outside of the support of the energy momentum
tensor, then r = rS is in the region of vacuum, for which the Schwarzschild metric is a
solution. Here the coordinates apply, and the singularity has the physical meaning of
the event horizon. A concept further discussed, when considering black holes.

5.2. Movement in a Schwarzschild system

Neglecting, that small and/or far away masses also curve spacetime, the solar system
is an example of a Schwarzschild system, assuming that the sun is nearly spherically
symmetric. Hence the movement in a Schwarzschild system have a practical application,
apart from theoretical interest. Here we will qualitatively compare the relativistic case
to the Newtonian case, using the results and ideas from [Car97, chapter 7].
To find geodesics, the equation ∇γ̇ γ̇ = 0 has to be solved. In local coordinates, this

conditions reads (corollary C.4.3):

γ̈ρ(s) = −Γρµν(γ(s))γ̇µ(s)γ̇ν(s) .

Riemannian normal coordinates allow to find coordinates, such that g(p) = η(p) for a
point in space time (compare theorem C.4.17), such that lemma 2.5.10 also applies in
general relativity. This means g(γ̇, γ̇) = −c2 for massive particles and g(γ̇, γ̇) = 0 , or
in local coordinates:

gµν γ̇
µ(s)γ̇ν(s) = ε :=

{
−c2 , massive particles
0 , massless particles . (5.1)

Using the coordinates for the standard form of a spherically symmetric, static metric,
these conditions give a set of equations. Again, we will not bother with the tedious
calculations and present only the ideas and results:

• To keep the notation short we write r ≡ γr etc.

• The first step is to observe that the spherical symmetry of the problem allows to
arrange the coordinates, such that θ = π

2 .
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• A direct calculation verifies that the Schwarzschild metric has the four Killing
vector fields ∂t, ∂r, ∂θ and ∂φ.

• Invariance under time translations corresponds to energy, such that ∂t is the
Killing vector belonging to energy. Using theorem C.6.6 we find:

E = −c2
(

1− rS
r

)
d

ds
t(s) ,

where E is the constant we associate with energy.

• By the choice of coordinates, invariance under rotations of φ correspond to the
total angular momentum (per unit mass) `. Hence:

` = r2 d

ds
φ(s) .

• Writing equation (5.1) explicitly for the Schwarzschild metric, plugging in the
expressions for E and ` and calculating a bit longer yields:

1
2

(
d

ds
r

)2

+ V (r) = 1
2E

2

with effective potential (according to [Fli16, eq. 25.27]):

V =
{
−GM

r
+ `2

2r2 − GM`2

c2r3 , massive particles
`2

2r2 − GM`2

c2r3 , massless particles .

V

r

` 6= 0

` = 0

(a) Classical case

V

r

` = 0

` large
` limit case

(b) Relativistic case

Figure 5.1.: Sketches of effective potentials in the classical and relativistical case.

Although only a solution for the radial component it allows to find effects that distinguish
general relativity from Newtonian gravity. For comparison, in the Kepler problem, for
a massive particle, one obtains the following effective potential:

V (r) = −GM
r

+ `2

2r2 .
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In the classical theory, as long as the angular momentum is not zero, the potential will
diverge to infinity for r → 0, preventing a particle with angular momentum from falling
into the star (center of mass). Also, if the angular momentum is non-zero, there is a
stable equilibrium.

However, in the relativistic case, the extra term −GM`2

c2r3 has the potential diverge to
−∞ for r → 0. This means, however large the angular momentum may be, there is a
radius, that if a particle falls below it, it will fall into the star. In the case r →∞, the
relativity term will become comparatively small, such that the large r behavior is as
the classical one. For the angular momentum, there can be three cases (quantitatively
by calculating local extrema). For large `, the effective potential has a local maximum
followed by a local minimum for increasing r. Hence, there is an instable and a stable
equilibrium. If ` decreases, the equlibria will move towards each other, until they
coincide in the limit case. Finally, for smaller angular momenta, the effective potential
will be exclusively attractive, as the classical ` = 0 case.



A
Tensors and Index-Notation
Tensors are a vital concept in physics. This chapter tries to introduce the underlying algebraic
concept of tensor products following [RW05] and [HO07]. As result, the universal property is the
starting point, allowing to prove existence and the well known properties for calculations. We
conclude this chapter with an introduction to Ricci-calculus, as given in [Jän05], observing the
invariant isomorphisms behind index manipulations.

A.1. Tensor product

Usually (at least in the physical literature) tensors are defined by transformation behavior
or calculational properties. Though this approach delivers a ready introduction for
calculations, the concepts remain non-transparent. The most transparent way, yet
sadly also the most abstract way, is the definition by universal properties commonly
used in abstract algebra. However, the fundamental behavior, the transformation
behavior, follows as direct corollary. An important structure left behind in the approach
of transformation behavior, is the tensor product, that will be the first object to
investigate here.

A.1.1. Existence and uniqueness

The following section is rather technical and can be skipped, if one is only interested in
the behavior of tensors.

Definition A.1.1 (Universal property).
Let V and W be K-vector spaces. Also let (T, t) be a tupel, consisting of a vector
space T and a bilinear map t : V ×W → T . The tuple is called tensor product
if the following universal property is fulfilled:
Let U be another vector space and f : V ×W → U be a linear map. Then there
exists a linear map ϕf : T → U , such that the following diagram commutes:

V ×W U

T

f

t ϕ

Theorem A.1.2 (Existence and uniqueness).
For any two K- vector spaces V and W , there exists always a tensor product
(T, t). This tensor product is unique up to isomorphy. That is, if (T ′, t′) is a
second tensor product, then there exists a defined isomorphism Ψ: T → T ′ such
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that the following diagram commutes:

V ×W T ′

T

t′

t ψ

Proof A.1.3.
Preparations: Let KM denote the set of maps from M in the field K. The set
KM is a vector space with point wise addition. A special class of maps in this
vector space are Kronecker-deltas

δm : M −→ K , x 7−→ δm(x) :=
{

1 , x = m
0 , sonst .

This gives rise to an embedding Φ of M in KM :

Φ: M ↪→ KM , m 7→ δm .

An important subspace of KM for this proof is the space of maps with f(x) = 0
for all but finitely many x ∈ M . This subspace will be denoted by K(M). Every
element of this space can be written as linear combination of finitely many deltas
δm. By definition the deltas are linear independent and thus forming a basis of
K(M):

K(M) = spanK(im(Φ)) .
Existence:
The existence follows from inspecting a commutative diagram:

K(V×W )

V ×W

Φ

(a)

K(V×W )

T

V ×W

π

Φ

(b)

K(V×W )

T

V ×W

π

Φ
t

(c)

K(V×W ) U

T

V ×W

π

σ

Φ
t

f

(d)

K(V×W ) U

T

V ×W

π

σ

ϕ

Φ
t

f

(e)
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(a) As we have seen, there is an embedding, that is, an injective map Φ: V ×W →
K(V×W ).

(b) We define the subspace X ⊂ K(V×W ). Let v, v′ ∈ V , w,w′ ∈ W and a ∈ K,
then X shall be defined as linear span of the following elements

δ(v+v′,w) − δ(v,w) − δ(v′,w) , δ(v,w+w′) − δ(v,w) − δ(v,w′) ,

δ(av,w) − δa(v,w) and δ(v,aw) − δa(v,w) .

The space T can now be defined as quotient T := K(V×W )/X. Hence T is a
space of equivalence classes with the following equivalence relation:

h ∼ h′ ⇔ ∃ x ∈ X : x′ = h+ x .

Let π : K(V×W ) → T be the canonical projection, i.e. the surjective map
assigning every h ∈ K(V×W ) its equivalence class π(h) = [h] ∈ K(V×W )/X.

(c) The map t : V ×W → T will be defined by t = π ◦ Φ. Due to the choice of X
the map is bilinear:

t((v + v′, w)− (v, w)− (v′, w)) = π(δ(v+v′,w) − δ(v,w) − δ(v′,w)) = [0]

⇒ [δ(v+v′,w)] = [δ(v,w)]+ [δ(v′,w)] ⇔ t((v+v′, w)) = t((v, w))+ t((v′, w)) .
The remaining properties can be shown similarly.

(d) It remains to show, that (T, t) satisfies the universal property. So let U be a
K-vector space and f : V ×W → U a bilinear map. The image of Φ defines a
basis of K(V×W ). Define the map σ by

σ(Φ(v, w)) = f(v, w) .

By linear completion σ is a linear map K(V×W ) → U . From the bilinearity of
f follows the bilinearity of σ:

σ(Φ(v + v′, w)) = f((v + v′, w)) = f(v, w) + f(v′, w) = σ(Φ(v, w)) + σ(Φ(v′, w)) .

Hence U ⊆ ker(σ).

(e) The fundamental theorem on homomorphisms states, that there exists a unique
linear map ϕ, completely defined by σ, such that the upper triangle of the
diagram commutes. Since σ is uniquely defined by f , so is ϕ, proving the
universal property.

Uniqueness:
To prove uniqueness we use a second tensor space T ′ for U :

(a) Since we have already proven the universal property, we know that there is a
unique map Ψ′ : T → T ′, defined by t′.

(b) Similarly there is a unique map Ψ: T ′ → T defined by t.
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T ′

T

V ×W

Ψ′

t

t′

(a)

T ′

T

V ×W

Ψ

t

t′

(b)

T T

V ×W

ξ

tt

(c)

T ′

T T

V ×W

Ψ

ξ

Ψ′

tt
t′

(d)

T

T ′ T ′

V ×W

Ψ′

ξ

Ψ

t′t′
t

(e)

(c) Also there is a unique linear map ξ ∈ End(T ), such that

ξ ◦ t = t

holds. Furthermore, IdT ◦ t = t holds. Since ξ was unique, ξ = IdT .

(d) Combining the diagrams, which commute by definition, shows that the whole
diagram does, too. Hence:

IdT = ξ = Ψ′ ◦Ψ .

(e) Similarly it follows that IdT ′ = Ψ ◦ Ψ′. Due to the uniqueness of Ψ, being
determined by t and the uniqueness of Ψ′, being determined by t′, theses maps
coincide in both diagrams. Thus finally Ψ′ = Ψ−1, i.e. it is an isomorphism.

A.1.2. Tensors

The tensor product is unique up to isomorphy, so it is common to speak about the
tensor product. The usual notation for (T, t) is (V ⊗W,⊗). As long as the field K is
understood, one can write ⊗, otherwise one needs to specify the field, e.g. ⊗K. This is
important, since ⊗ is bilinear only with respect to K:

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w ,

v ⊗ (w + w′) = v ⊗ w + v ⊗ v′ ,

(αv)⊗ w = α(v ⊗ w) = v ⊗ (αw) .
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Definition A.1.4.
Tensors of the form v ⊗ w ∈ V ⊗W with v ∈ V and w ∈ W are called pure
tensors

By the construction of V ⊗W it follows that every tensor can be written as sum of
pure tensors.

Theorem A.1.5.
Let {vi}i∈I be a basis of V and {wj}j∈J a basis of W for finite dimensional vector
spaces. Then {vi ⊗ vj}i∈I,j∈J is a basis of V ⊗W and it follows that:

dim(V ⊗W ) = dim(V ) · dim(W ) .

Proof A.1.6.
We consider the following map:

t′ : V ×W −→ K(I,J) ,

∑
i∈I

xivi,
∑
j∈J

yjwj

 7−→ xiyj · δ(i,j) .

Here I and J are the index sets of the bases of V andW . The map t′ is bilinear and
maps elements (vi, wj) to the basis elements δ(i,j) of K(I,J). By linear completion
there is a unique linear map ϕ : K(I,J) → U for every bilinear map f : V ×W → U ,
defined by

f(v, w) = ϕ(t′(v, w)) ∀ v ∈ V, w ∈ W .

Thus the following diagram commutes:

V ×W U

K(I,J)

f

t ϕ

Hence the tuple (K(I,J), t′) satisfies the universal property. With theorem A.1.2
we find K(I,J) ∼= V ⊗W . The isomorphism Ψ between those vector spaces has the
property Ψ ◦ t′ = ⊗, mapping t′(vi, wj) = δ(i,j) to vi ⊗ wj. Since {δ(i,j)} is a basis
of K(I,J), so is {vi ⊗ wj} a basis of V ⊗W .

With the universal property we can prove the following isomorphies:

Lemma A.1.7 (Ismorphisms of tensor spaces).
Let V,W and U be K-vector spaces, then the following isomorphies are unique
for the stated conditions:

(i) V ⊗W ∼= W ⊗ V, v ⊗ w 7→ w ⊗ v.

(ii) (U ⊗ V )⊗W ' U ⊗ (V ⊗W ), (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w).
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(iii) (U
⊕

V )⊗W ' (U ⊗W )
⊕

(V ⊗W ) (u, v)⊗ w 7→ (u⊗ w, v ⊗ w).

(iv) K⊗K V ∼= V, a⊗ v 7→ a · v.

Proof A.1.8 (Œ for (i)).
Let t : V × W → W ⊗ V be defined by t(v, w) = w ⊗ v. Every bilinear map
f : V ×W → U determines ϕ : W × V → U uniquely by

ϕ(w ⊗ v) = f(v, w) ,

such that the following diagram commutes:

V ×W U

W ⊗ V

f

t ϕ

Thus (W ⊗ V, t) satisfies the universal property and is isomorphic to V ⊗W due
to theorem A.1.2. The remaining isomorphisms can be proven similarly.1

The last isomorphism (iv) is only valid, if the field used as vector space is the same
as the field used to define the tensor product. If K′ ⊃ K is a field containing K as
subfield (e.g. C and R), then statement (iv) fails: K′ ⊗K V 6∼= V . Yet K′ ⊗K V becomes
a K′-vector space. That is, the scalar range of V is extended to K′, by

a′ · (b′ ⊗ v) = (a′ · b′)⊗ v .

Definition A.1.9.
Let K be a subfield of C, i.e. K = Q or R, and let V be a K-vector space. The
tensor product V C := C⊗K V is called complexification of V .

It can be shown, that if {vj}j∈J is a basis of V , so is {1⊕K vj}j∈J of V K′ .

Lemma A.1.10.
Let V1, V2,W1,W2 be vector spaces, and ϕ1 : V1 → W1 as well as ϕ2 : V2 → W2 be
linear maps. Then there is a unique linear map

ϕ1 ⊗ ϕ2 : V1 ⊗ V2 −→ W1 ⊗W2 , (ϕ1 ⊗ ϕ2)(v1 ⊗ v2) = ϕ1(v1)⊗ ϕ2(v)2 .

This tensor product of linear maps has the following properties:

1. IdV1 ⊗ IdV2 = IdV⊗V2.

2. For two additional linear maps ϕ′1 : V1 → W1 and ϕ′2 : V2 → W2, it holds
that:

(ϕ1 ⊗ ϕ2) ◦ (ϕ′1 ⊗ ϕ′2) = (ϕ1 ◦ ϕ′1)⊗ (ϕ2 ◦ ϕ′2) .

1For example see [RW05, p. 4-5] for (iv).
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3. The map

Hom(V1,W1)× Hom(V2,W2) ↪→ Hom(V1 ⊗ V2,W1 ⊗W2)
(ϕ1, ϕ2) 7→ ϕ1 ⊗ ϕ2

is bilinear and injective. For finite-dimensional vector spaces it is an iso-
morphism.

From the definition of the algebraic dual space V ∗ = Hom(V,K) and the isomorphy
K⊗K V ∼= V the injection

V ∗1 ⊗ V ∗2 ↪→ (V1 ⊗ V2)∗ ,

follows as direct result from the previous lemma. Accordingly it is an isomorphism for
finite-dimensional vector spaces.

Lemma A.1.11.
There is an embedding V2⊗V ∗1 into Hom(V1, V2), defined by the following injective
linear map

V2 ⊗ V ∗1 ↪→ Hom(V1, V2) , v2 ⊗ ϑ1 7→ `v2,ϑ1 ,

where `v2,ϑ1(v) = ϑ1(v) · v2. This map can be extended linearly for V2 ⊗ V ∗1 .

As before, the embedding becomes an isomorphy in the finite-dimensional case.

Corollary A.1.12.
Let {ei}i be a basis of a finite-dimensional vector space V and {ϑj}j the dual
basis. Then, every linear operator L ∈ Hom(V,W ) can be written as tensor from
W ⊗ V ∗:

L =
∑
i

(Lei)⊗ ϑi .

Although the tensor product is defined for infinite-dimensional vector spaces, too, the
tensor product of two Hilbert spaces does not need to be one as well. The missing
property is completeness here.
Let H1 and H2 be two Hilbert spaces. One can define a scalar product on H1 ⊗H2

by

〈v1 ⊗ v2|w1 ⊗ v2〉 = 〈v1|w1〉 · 〈v2|w2〉 .

To obtain a Hilbert space, one can take the metric completion with respect to that
scalar product.
We have spoken about bases so far, even in the infinite-demensional case. A basis

allows to linear combine every element of the space with finitely many basis elements.2
Theorem A.1.5 can be extended to Hilbert-bases.

2Contrasting Hilbert-bases, where the sum is infinite. In infinite spaces, a true basis may even become
uncountable.
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A.2. Ricci calculus

In Ricci calculus, tensors are characterized by their coefficients (becoming a list of
numbers). There are three important principles we need to understand:

1) Components define objects
2) Position of indices determines transformation behavior.
3) Summation convention.

A.2.1. Co-and contravarianz

Let V be a vector space, {ei}i=1,...,n a basis and V ∗ be the dual space with dual basis
{ϑi}i=1,...,n. A vector v ∈ V is called contravariant and is described by coefficients
with upper indices:

v =
n∑
i=1

viei ≡ viei .

A dual vector ϕ ∈ V ∗ is called covariant and is described by coefficients with lower
indices

ϕ = ϕiϑ
i .

In the last equation we have already used the summation convention. Over same
indices, one upper and one lower, will always be summed (without having to write the
summation symbol).
Changing the basis ei → ẽi does not change the element v, but its components:

v = viei = ṽkẽk .

By definition there are coefficients, such that ei = Ajiẽj can be written. Plugging in
yields the connection between vi and ṽk:

v = ṽkẽk = viei = viAjiẽj ⇒ ṽk = Akiv
i .

For the coefficients of the matrix A, we have already used the Ricci convention. Still,
the first index describes the row and the second index the columns, independent if it is
an upper or lower index.

Remark A.2.1 (Composition of linear maps).
Let A,B ∈ End(V ) for a finite dimensional vector space V . Due to the isomorphy
End(V ) ' V ⊗ V ∗, these maps can be written as tensors:

A = Aei ⊗ ϑi = Ajiej ⊗ ϑi and B = Bk
`ek ⊗ ϑ` .

Evaluating (A ◦B)(v) for an arbitrary vector v ∈ V yields

(A ◦B)(v) = Ajiej · ϑi
(
Bk

`ek · ϑ`(v)
)

= AjiB
k
`ϑ

`(v)ϑi(ek) · ej
= AjiB

k
`ϑ

`(v)δik · ej = AjiB
i
`ϑ

`(v) · ej
=
((
AjiB

i
`

)
ej ⊗ ϑ`

)
(v) .
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From the last equality we can read off the coefficient behavior under composition:

(A ◦B)j` = AjiB
i
`

If A is a basis change matrix, there is an inverse A−1. From the above remark we know,
that this can be expressed by Aij(A−1)jk = δik. Dual vectors are linear and defined by
ϑi(ej) = δij and respectively ϑ̃i(ẽj) = δij, thus we find:

δij = ϑi(ej) = ϑi(Akj ẽk) = Akjϑi(ẽk) .

Since the dual vector space is also a vector space, there are coefficients such that
ϑi = M i

` ϑ̃
`. Plugging in results in the transformation behavior of covectors:

δij = Akjϑ
i(ẽk) = AkjM

i
` ϑ̃

`(ẽk) = AkjM
i
` δ
k
` = AkjM

i
k = M i

kA
k
j ⇒ M = A−1 .

⇒ ϕ = ϕ̃jϑ̃
j = ϕiϑ

i = ϕi(A−1)ikϑ̃k ⇒ ϕ̃j = (A−1)ijϕi .
By definition, basis change matrices are orthogonal/unitary. That is A−1 = A† /
A−1 = AT . Summing up our findings:

coefficients transformation basis vectors

contravariant ṽk = Akiv
i ẽk = (AT )ikei

covariant ϕ̃k = (AT )ikϕi ϑ̃k = Akiϑ
i

A.2.2. Tensors in Ricci calculus

After we have seen the foundations of Ricci calculus we can use this formulation on
tensors:

Definition A.2.2.
A tensor, consisting of r vectors and s covectors

T ∈ V ⊗ ...⊗ V︸ ︷︷ ︸
r times

⊗ V ∗ ⊗ ...⊗ V ∗
s times

is called tensor of type (r, s). The number r + s is called the rank, also for
a general order of vectors and covectors.

A tensor of type (r, s) can be expanded as follows:

T = T i1...irj1...js ei1 ⊗ ...⊗ eir ⊗ ϑ
j1 ⊗ ...⊗ ϑjs .

In Ricci calculus one agrees upon the following identification:

T = T i1...irj1...js .

A change of basis results in the following transformation behavior:

T̃ n1...nr
m1...ms = An1

i1 ...A
nr
ir(A

−1)m1
j1 ...(A

−1)msjs T
i1...ir

j1...js

This behavior is used to define tensors in the physical literature.



A.2. Ricci calculus 49

A.2.3. Raising and lowering indices

In case of a Riemannian manifold there is a fourth principle, induced by the Riemannian
metric:

4) Raising and lowering indices

To understand the invariant meaning behind these manipulations, instead of just defining
them, it is best to use the coordinate free formulation first.
Let g be a scalar product (or Riemannian metric). Then there is an isomorphism

I1 : vector −→ covector v 7−→ I1(v) = g(v, ·) .

Remark A.2.3.
In the literature, the isomorphism I1 and its inverse I−1

1 are called flat- and sharp
isomorphism respectively. The usual notation is

I1(v) = v[ and I−1
1 (ω) = ω# .

These isomorphisms can be applied to individual parts of the tensor, still defining an
isomorphism between tensor spaces. For example, a (1, 1)-tensor becomes a (0, 2)-tensor
if I1 ⊗ 1 is applied, and a (2, 0)-tensor, if 1⊗ I−1

1 is applied.
Let ∂µ be a tangent basis and dxν be the dual basis of the cotangent space. Defining

the coefficients of the Riemannian metric by gµν = g(∂µ, ∂ν), there is an inverse matrix
(list of numbers) gµν . By definition of scalar products the matrices are symmetric:
gµν = gνµ and hence gµν = gνµ. For the isomorphisms I1 and I−1

1 it follows that:

I1(∂µ) = g(∂µ, ·) = gµνdx
ν and thus3 I−1

1 (dxµ) = gµν∂ν .

The coefficients transform as follows:

I1(vµ∂µ) = gµνv
µdxν =: vνdxν and I−1

1 (uµdxµ) = gµνuµ∂ν =: uν∂ν .

Remark A.2.4.
A contravariant vector vµ becomes a covariant vector vν by lowering the index:

vν = gµνv
µ .

Raising an index on the other hand, transforms a covector into a vector:

uν = gµνuµ .

The raising and lowering can be applied for indices of tensors separately:

gµνA
...µ...

... = A... ...µ ... .

3∂µ = I−1
1 (gµνdxµ) = gµν I

−1
1 (dxµ) ⇒ gµνgµν I

−1
1 (dxµ) = I−1

1 (dxµ) = gµν∂µ.
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Remark A.2.5.
The scalar product of two vectors uµ∂µ and vν∂ν can be written as composition:

g(uµ∂µ, vν∂ν) = uµvνgµν = uνv
ν = vµu

µ .



B
Variational calculus for fields

In this chapter we cover the fundamentals of variational calculus. We introduce the mathematical
notion of functionals and the concepts, as well as properties, of their derivatives, following [Wer11,
chapter III.5]. In the second section we focus on the important class of functionals that can be
expressed by Lagrange-densities, deriving the Euler-Lagrange-equations. We conclude this chapter
by discussing notations of the physical literature, used in [AS10] for example.

B.1. Functional derivative and variation

In variational calculus (e.g. in the context of least action) the goal is to find functions,
that minimize or maximize a given functional. In general a functional is a map from
a normed space X into its number field. Recalling, that for functions f : R → R a
vanishing first derivative is a necessary condition for extrema, we are looking for a
similar computational tool in the case of functionals. We will see, that there is a concept
of derivative, that is not only connected to the concept of variations, but also the
computational tool we are looking for.

Definition B.1.1.
Let F : U(x0) ⊂ X → R be a functional defined on a neighborhood containing
x0. The n-th variation δnF (x0;h) of F in direction of h ∈ X is defined, if it
exists, by

δnF (x0;h) = dn

dtn
F (x0 + th)

∣∣∣∣∣
t=0

.

The variation resembles the directional derivative of multivariable calculus. This leads
to the following definition:

Definition B.1.2.
Let F be a functional as before. If δF (x0;h) exists for all h ∈ X and there is a
linear continuous functional L : X → R, such that

L(h) = δF (x0;h) ∀ h ∈ X ,

the functional is called Gâteaux-differentiable in x0. The linear continuous
functional is called the Gâteaux-derivative Ĝx0F of F in x0. Accordingly F is
called Gâteaux-differentiable on X if it is Gâteaux-differentiable in all x ∈ X.

As in multivariable calculus, we are not only interested in the directional derivative, but
also for the derivative itself. Even in the finite-dimensional case, the existence of the
directional derivative in every direction is not enough to prove the existence of the total
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derivative. Writing the definition of the Gâteaux-derivative slightly different reveals the
generalization necessary to define an analogue to the total differential:

lim
t→0

|F (x0 + th)− F (x0)− tĜx0F (h)|
t

= 0 .

In this form one can see easily the similarity to the directional derivative. In the
finite-dimensional case one demands the sequence to be uniformly convergent to define
the total differential, motivating the following definition:

Definition B.1.3.
Let F : U(x0) ⊂ X → R be a functional on a neighborhood around x0. The
functional is said to be Fréchet-differentiable in x0, if there is a continuous
linear functional L : X → R such that

lim
X3h→0

|F (x0 + h)− F (x0)− L(h)|
‖h‖X

= 0 .

The continuous linear functional L is called the Fréchet-derivative Dx0F in x0
of F .

From the definitions it is clear, that if a functional is Fréchet-differentiable in x0 is is
also Gâteaux-differentiable in x0 and

Dx0F (h) = Ĝx0F (h) = δF (x0;h) .

The condition to be Fréchet-differentiable can be reinterpreted as linearization of the
functional. The existence of the limit is equivalent to

F (x0 + h)− F (x0)−Dx0F (h) = r(h) with lim
X3h→0

r(h)
‖h‖X

= 0 .

In introductory texts about analytical mechanics the concept of functional derivative
is introduced as follows: If the change of the functional F (x0 + h) − F (x0) can be
written as sum of a part L(x0, h) that is linear in h and a part R(x0, h) that decreases
faster than ‖h‖X , i.e.

F (x0 + h)− F (x0) = L(x0, h) +R(x0, h) = Dx0F (h) + r(h) ,

the functional L is called functional derivative of F in x0. With the knowledge about
Fréchet-derivatives, one can clearly see, that theses texts introduce the Fréchet-derivative,
which can be defined in even more general cases. The Fréchet-derivative of an operator
F : X → Y can be defined as before, using ‖ · ‖Y instead of | · |.

Theorem B.1.4 (Properties of the Fréchet-derivative).
i) The continuous linear operator L defining the Fréchet-derivative is unique.

ii) If F and G are Fréchet-differentiable in x0, so are F + G and λF for all
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λ ∈ R, and it holds, that

Dx0(F +G) = Dx0F +Dx0G and Dx0(λF ) = λDx0F .

iii) If F and G are Fréchet-differentiable in x0, then F ·G is Fréchet-differentiable
and the Fréchet-derivative satisfies the product rule:

Dx0(F ·G) = G(x0)Dx0F + F (x0)Dx0G .

iv) Let X, Y, Z be normed spaces, and F : D(F ) ⊂ X → Y , as well as
G : D(G) ⊂ Y → Z be Fréchet-differentiable operators with F (D(F )) ⊂
D(G). Then G ◦ F is Fréchet-differentiable and the chain-rule applies:

Dx0(G ◦ F ) = DF (x0)G ◦Dx0F .

The first property allows to speak about ”the” Fréchet-derivative. Also it allows to
prove the remaining properties in the same way one does in the finite-dimensional case,
by using the uniqueness of the linearization. If Fréchet-differentiability is given, the
same rules apply to the Gâteaux-derivative and hence also for the first variation. Yet
the opposite direction is not true.

By the similarities we have encountered so far, it is hardly a surprise that a vanishing
Fréchet-derivative and thus vanishing variations for all h, is a necessary condition for
extrema. Sufficient conditions, unlike in the finite-dimensional case, are however more
complicated. In most cases, at least for physical theories, it is not important if a solution
is minimizing or maximizing. Otherwise, usually there is an easy way to determine
what kind of extremum it is, by physical reasoning.

B.2. Variation of Lagrange densities

In most physical applications the functionals of interest can be written as integration
over a Lagrange density. A Lagrange-density L is an object, that maps functions to
functions and thus defining itself a function of functions (and its variables):

L(f(x), g(x), . . . , x) = `(x) ,

where ` : U ⊂ Rn → R is a proper function. Furthermore, the functionals S(φ) of
interest often have Lagrange densities that do only depend on the components of the
fields φa...bc...d and their partial derivatives φa...bc...d,µ:

S(φ) =
∫
U
L(φa...bc...d(x), φa...bc...d,µ(x), x) dnx.

Here U has to be a compact subset of Rn. In the case of invariant theories on Riemannian
manifolds one can also use covariant derivative instead of partial derivatives. We shorten
the notation of tensor components in the following, using φIJ ≡ φa...bc...d.
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Theorem B.2.1.
Let S(φ) =

∫
U L(φIJ , φIJ,µ, x) dnx be a Fréchet-differentiable functional with two

times continuously differentiable Lagrangian. Then the first variation over fields,
vanishing at the boundary ∂U , can be written as follows:

δS(φ;ψ) =
∫
U

∂L(φIJ , φIJ,µ, x)
∂φIJ

−
n∑
µ=1

∂

∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ dnx .

Proof B.2.2.
Assuming Fréchet-differentiability we know that the Gâteaux-derivative exists and
can simply calculate the first variation for the proof:

S(φ+ tψ)− S(φ) =
∫
U
L(φIJ + tψIJ , φ

I
J,µ + tψIJ,µ, x)− L(φIJ , φIJ,µ, x) dnx .

The difference of the Lagrange-densities can be Taylor-expanded for small t, which
is given, when we take the limit.

L(φIJ + tψIJ , φ
I
J,µ + tψIJ,µ, x) = L(φIJ , φIJ,µ, x)

+ t
d

dt

∣∣∣∣∣
t=0
L(φIJ + tψIJ , φ

I
J,µ + tψIJ,µ, x)

+O(t2) .

Thus the integrand becomes:

L(φIJ + tψIJ , φ
I
J,µ + tψIJ,µ, x)− L(φIJ , φIJ,µ, x) = t

d

dt

∣∣∣∣∣
t=0
L(φIJ + tψIJ , φ

I
J,µ + tψIJ,µ, x)

+O(t2) .

Evaluating the parameter derivative, using the parameter chain rule1, we find

d

dt

∣∣∣∣∣
t=0
L(φIJ + tψIJ , φ

I
J,µ + tψIJ,µ, x) =

∂L(φIJ , φIJ,µ, x)
∂φIJ

ψIJ +
n∑
µ=1

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ,µ .

Also we observe that

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ,µ = ∂

∂µ

(
∂L(φIJ , φIJ,µ, x)

∂φIJ,µ
ψIJ

)
−
(
∂

∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

)
ψIJ .

Inserting our findings in the expression for S(φ+ tψ)− S(φ) we get:

S(φ+ tψ)− S(φ) = t
∫
U

∂L(φIJ , φIJ,µ, x)
∂φIJ

−
n∑
µ=1

∂

∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ dnx
+ t

∫
U

∂

∂µ

(
∂L(φIJ , φIJ,µ, x)

∂φIJ,µ
ψIJ

)
dnx+O(t2) .
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The integral in the second line can be rewritten using Stokes theorem (better
known as Gauss-theorem or divergence theorem here). By assumption ψIJ = 0 on
∂U we find:

∫
U

∂

∂µ

(
∂L(φIJ , φIJ,µ, x)

∂φIJ,µ
ψIJ

)
dnx =

∫
∂U

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ dΩ = 0 .

Finally with δS(φ;ψ) = lim
t→0

1
t
S(φ+ tψ)− S(φ) we get an expression for the first

variation:

δS(φ;ψ) =
∫
U

∂L(φIJ , φIJ,µ, x)
∂φIJ

−
n∑
µ=1

∂

∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ dnx .

It is common practice to imply the sum over µ by using ∂µ instead of ∂
∂µ

in the sense of
Ricci-calculus.

Lemma B.2.3 (Euler-Lagrange-equations).
A smooth field φ extremizes the functional S(φ) =

∫
U L(φIJ , φIJ,µ, x) dnx with the

boundary condition φIJ |∂U ≡ 0 if it satisfies the Euler-Lagrange-equations :

∂L(φIJ , φIJ,µ, x)
∂φIJ

− ∂µ
∂L(φIJ , φIJ,µ, x)

∂φIJ,µ
= 0 .

Proof B.2.4.
All we need to do, is to show that δS(φ;ψ) = 0, is equivalent to the Euler-Lagrange-
equations. From the last theorem we know that

δS(φ;ψ) =
∫
U

(
∂L(φIJ , φIJ,µ, x)

∂φIJ
− ∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

)
ψIJ d

nx .

If the Euler-Lagrange-equations are satisfied, we are integrating over the zero
function, such that δS(φ;ψ) = 0. The opposite direction is harder to show. Yet,
there is an important theorem, called Fundamental lemma of calculus of
variations, which states that an integrable function f : Ω ⊂ Rn → R is identically
zero, if ∫

Ω
f(x)g(x) dnx = 0

for all g ∈ C∞ with compact support. Since we assumed U to be compact ψIJ has
a compact support.

1 d

dt
f(x1(t), . . . , xm(t)) =

m∑
i=1

∂f(x1(t), . . . , xm(t))
∂xi

d

dt
xi(t).
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B.3. Physical conventions and notations

In the physical literature there are different notations and conventions for variational
calculus. For example, arguments of functionals get square brackets S[φ]. Most notably
however, is the notation and concept of the functional derivative. As we have seen, the
functional derivative (Fréchet-derivative) of a functional S defined by an integration
over a Lagrange-density, can be written as integral operator

DφIJ
S =

∫
U
dnx

(
∂L(φIJ , φIJ,µ, x)

∂φIJ
− ∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

)
.

The domain of the functional is the set of smooth tensor fields on a compact subset of
Rn. Also the Lagrange-density had to satisfy differentiability and dependence conditions.
We notice, that the integral-operator defines a distribution over a function, commonly
denoted by δS

δφIJ
:

δS

δφIJ
=
∂L(φIJ , φIJ,µ, x)

∂φIJ
− ∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

.

The term δS
δφIJ

is also called functional derivative. This is possible, as a function
defines a regular distribution by integration. However, we had to restrict the domain of
the functional, that can be defined on a larger set. However, if one does so, the term
δS
δφIJ

defines no longer the Fréchet-derivative. We have seen so in the proof, where we
could ignore boundary terms, which enter in a general setting. The physical jargon of
this is: the field variations vanish at the boundary.
However, even with relaxed conditions, δS

δφIJ
is called functional derivative in the

physical literature. The reasoning behind this is, that although it does no longer define
the Fréchet-derivative, it still defines the variation with respect to fields ψ, that have
vanishing variations on the boundary:

δS(φ, ψ) =
∫
U

δS

δφIJ
ψIJ d

nx .

The field φ is not necessary an extrmum anymore, since only variations in special
directions vanish.

Also, the condition of U to be compact can be relaxed, as long as the variation fields
ψ have a compact support.

Remark B.3.1.
More carefully one should be with concepts involving the delta function. An
example for this would be the definition of functional derivatives:

δS

δφIJ(y) = lim
t→0

1
t
(S[φ+ tδ(x− y)]− S[φ]) .

As a means of notation, this works for Lagrange-densities. However, the delta-
distribution is not regular. Hence, the above definition for functional derivative
fails for more general functionals.



C
Riemannian geometry

Riemannian geometry is the most fundamental mathematical field for general relativity. The field
equations, that determine the physics of gravity, link the matter/energy to the curvature and metric
of the space. These objects (metric and curvature) are the central objects of Riemannian geometry.
In the following we cover the basics of Riemannian geometry, including: bundles, connections,
Lie-derivatives, geodesics, curvature and Killing fields. Most of this chapter is based on [Lee97],
which will be followed very closely. The parts about Lie-derivatives and Killing fields are based on
[Mor01] and [Win07, chapter 1].

C.1. Motivation: Geodesic equation

In the physical literature, Riemannian geometry is mostly discussed in coordinates,
hiding the bigger picture and mathematical symmetry. The reason for the physical
approach is, partly due to simplicity, and partly due to the readiness of equations that
can be used to calculate. The mathematical approach is, on the other hand rather
abstract. To motivate this chapter, we show, how the Christoffel symbols arise in the
physical context (using Ricci notation).

In addition to time dilation, caused by accelerated movement, we expect a gravitational
time dilation due to the equivalence principle. As we have seen in section 2.6 the proper
time and the length of the world line with respect to −g correspond to each other. One
can argue, that inertial movement creates curves of maximal length, equivalent to the
observation that time passes slower in accelerated systems. We assume this to be true
generally, finding the following variational principle:

δ
∫ λ2

λ1
L(x, ẋ) dλ = δ

∫ λ2

λ1

√
−gαβ(x(λ))ẋα(λ)ẋβ(λ) dλ = 0 .

One recognizes, that L is a Lagrange function, where ẋµ = d
dλ
xµ(λ). To solve the

variational problem, we can use the Euler-Lagrange equations.

d

dλ

∂L

∂ẋµ
− ∂L

∂xµ
= 0

⇔ gαµ(x)ẍα + 1
2

(
∂

∂xβ
gµα(x) + ∂

∂xα
gβµ(x)− ∂

∂xµ
gαβ(x)

)
ẋαẋβ

− gαµ(x) d
dλ
L(x, ẋ)ẋα = 0

Using the inverse metric gµν(x) we get the geodesic equation:

ẍα + Γναβẋαẋβ −
d

dλ
L(x, ẋ)ẋα = 0 ,
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where we defined the Christoffel symbols (which define a so called connection)

Γναβ := 1
2g

µν(x)
(

∂

∂xβ
gµα(x) + ∂

∂xα
gβµ(x)− ∂

∂xµ
gαβ(x)

)
.

C.2. Connections

The geodesic equation, from the last chapter, describes the geodesics of the pseudo
Riemannian spacetime manifold. Geodesics play a central role in Riemannian geometry
in general. These special curves are defined with the help of the Levi-Civita-connection.

C.2.1. Vector bundles

Connections, in our context, are generally defined on vector bundles, a concept underly-
ing many structures used in physics.

Definition C.2.1.
A smooth k-dimensional real vector bundle is the triple (E,M, π) consisting
of C∞-manifolds E, called total space, M , called base space and a surjective
map π : E →M , called projection, such that the following properties hold:

i) Every fiber Ep := π−1(p) is a k-dimensional vector space.
ii) For every p ∈ M there exists a neighborhood U and a diffeomorphism

ϕ : π−1(U)→ U × Rk, called local trivialization, such that the following
diagram is commutative:

π−1(U) U × Rk

U U

ϕ

π π1

IdU

where π1 : U × Rk → U is the canonical projection on U .
iii) The restriction of ϕ to a fiber ϕ|Ep : π−1(p) → {p} × Rk is a vector space

isomorphism.

A very well known example for vector bundles is the tangent bundle TM , i.e. the
disjoint union of the tangent spaces TpM :

TM := {(p, α) | p ∈M, α ∈ TpM} .

In the same way one defines the cotangent bundle T ∗M . This construction can be
extended to tensor product spaces of tangent and cotangent spaces. Let ⊗(r,s) TpM be
the tensor space of rank (r, s)-tensors:

⊗(r,s)(TpM) = TpM ⊗ . . .⊗ TpM︸ ︷︷ ︸
r−times

⊗ T ∗pM ⊗ . . .⊗ T ∗pM︸ ︷︷ ︸
s−times

.
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Figure C.1.: Illustration of the tangent bundle. On the left, the tangent lines of S1. On the right,
the corresponding tangent bundle, with base space S1 defining the total space [0, 2π)× R, which is a
smooth manifold.

The (r, s)-tensor bundle is defined by:

⊗(r,s)(TM) :=
{

(p, T )
∣∣∣∣ p ∈M, T ∈

⊗(r,s)(TpM)
}
.

Definition C.2.2.
Let (E,M, π) be a vector bundle. A section is continuous map s : M → E such
that s(p) ∈ Ep (⇔ π ◦ s = IdM) holds.

Since sections are maps between differentiable manifolds, one can define sections of class
Cr as usual. The vector space of r-times continuously differentiable sections will be
denoted by Cr(E,M) in the following. The vector space of smooth sections is commonly
denoted by Γ(E,M) or Γ(E).

Example C.2.3.
A smooth (r, s)-tensor field is a section in Γ

(⊗(r,s)(TM),M
)
.

After introducing sections, there is an easy way to define Riemannian metrics.

Definition C.2.4.
A pseudo Riemannian metric is a smooth symmetric (0, 2)-tensor field g ∈
Γ
(⊗(0,2) (TM) ,M

)
. If the tensor field is positively definite, that is

g(v, v)|p =: gp(v|p, v|p) ≥ 0
gp(v|p, v|p) = 0 ⇔ v|p = 0 ∀ v ∈ C∞(TM,M) ∀p ∈M ,

it is called Riemannian metric. A (pseudo) Riemannian manifold (M, g) thus
is a manifold M together with a (pseudo) Riemannian metric.
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Remark C.2.5.
Let {E1, . . . , En} be a local smooth frame and {ϑ1, . . . , ϑn} the dual frame. The
metric g can be written in terms of these frames by

g = gijϑ
i ⊗ ϑj , with gij = g(Ei, Ej) .

In particular, for a chart we have

g = gijdx
i ⊗ dxj , with gij = g(∂xi , ∂xj) .

Still, the coefficients gij are functions M → R. To obtain a coordinate representa-
tion of the metric tensor one uses the chart induced pullback:

(x−1)∗g =
(
gij ◦ x−1

)
(x−1)∗dxi ⊗ (x−1)∗dxj .

The function (gij ◦ x−1) is a map from U ⊂ Rn → R commonly denoted by gij(x).
For the pullback of the coordinate differentials, abusing the notation, one often
writes dxi although e∗i is meant.

So far,vector bundles are a global construction, that fulfills local conditions. However,
the bundle can be reconstructed from local information. To motivate this, we consider
two local trivializations ϕα,β : π−1(Uα,β)→ Uα,β ×Rk, where the intersection Uα ∩Uβ is
nonempty. Since ϕα,β have to be diffeomorphisms and thus have to be invertible, the
following map a well defined diffeomorphism:

ϕα ◦ ϕ−1
β : (Uα ∩ Uβ)× Rk −→ (Uα ∩ Uβ)× Rk .

The condition on local trivializations (commutativity of diagram) shows, that the above
defined map acts as follows:

(p, v) (p, fαβ(p)v) .
ϕα◦ϕ−1

β

The restriction to a fiber has to be a vector space isomorphism, hence fαβ, called
transition function, maps points to invertible linear maps: fαβ : Uα ∩ Uβ → GL(Rk).

Remark C.2.6.
In the fiber bundle context, the Lie-group GL(Rk) would be called structure
group of the bundle. Indeed, different vector bundles can have the transition
functions being only in a subgroup of GL(Rk), and thus giving rise to special
symmetries, e.g. orientation line bundles.

Theorem C.2.7 (vector bundle construction theorem).
Let {Uα}α∈A be an open cover of a C∞-manifold M , and {fαβ} be a set of
differentiable functions, such that the cocycle condition

fαβ(p)fβγ(p) = fαγ(p) ∀p ∈ Uα ∩ Uβ ∩ Uγ
is fulfilled. Then there exists a vector bundle over M , that has {fαβ} as transition
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functions.

We do not prove the theorem here1, since we will only be concerned about the tangent
bundle and the Levi-Civita-connection.2

Definition C.2.8.
Let (E,M, π) and (E ′,M ′, π′) be two vector bundles. A bundle map is a pair
(f̃ , f) of continuous maps f̃ : E → E ′ and f : M → M ′ such that the following
diagram commutes:

E E ′

M M ′

f̃

π π′

f

The vector bundles are called isomorphic, if the have the same base space M
and there is a bundle map of the form (f̃ , IdM).

C.2.2. Linear Connections

In the first section of this chapter we introduced the geodesic equation. The reasoning
is, that one wants to have an equivalent of straight lines in curved spaces. As can be
seen easily, it is not as simple as taking a second derivative, as long as the Christoffel
symbols do not vanish. Indeed, while the first derivative of curves is well defined and
coordinate independent, the second derivative with respect to a parameter is not. A
simple example is a circle in R2 in Cartesian coordinates and in polar coordinates:

r(t) =
(

cos(t)
sin(t)

)
r(t) =

(
r0

t

)
,

r̈(t) = −r(t) 6= 0 r̈(t) = 0 .

The problem arises, for there is no way to construct a coordinate independent difference
quotient. This is, because the tangent vectors in the difference quotient are in different
vector spaces. Hence we need an additional concept: connections:

Definition C.2.9.
Let (E,M, π) be a vector bundle. A connection ∇ is a map

∇ : Γ(TM)× Γ(E) −→ Γ(E) , (v,X) 7−→ ∇vX ,

satisfying the following properties:

i) ∇ is linear over C∞(M) in Γ(TM):

∇fv1+gv2X = f∇v1X + g∇v2X ∀ f, g ∈ C∞(M) .

1See [Mor01, poof of proposition 6.2] for a proof in the more general case of fiber bundles.
2Still, the theorem deserves to be mentioned, especially because some authors take it as quick
definition for vector bundles in order to study topological properties.
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x

y

γ̇

γ̈

r

ϕ

γ̇

Figure C.2.: Illustration of the difference of second order derivatives in different coordinates (Left:
Cartesian coordinates. Right: polar coordinates).

ii) ∇ is liner over R in Γ(E):

∇v(aX1 + bX2) = a∇vX1 + b∇vX2 .

iii) ∇ satisfies the product rule:

∇v(fX) = f∇vX + v(f) ·X ∀ f ∈ C∞(M)

From this definition, a connection seems to be a global object. However, on can show,
that the evaluation depends only on local information:

Lemma C.2.10.
The result of ∇vX|p only depends on the behavior of X in an arbitrary small
neighborhood U around p and the value of v|p. Thus one can write:

∇vX|p = ∇v(p)X .

Proof C.2.11.
Let ϕ be a test function with support in a neighborhood U around p and ϕ ≤
1, ϕ(p) = 1. Consider Ỹ with X̃|U = XU . It is sufficient to show that ∇v(X −
X̃)|p = 0 on a small neighborhood around p. We will show that ∇vϕ · (X − X̃)|p
is zero and find as consequence that ∇v(X − X̃)|p is zero. We start by noticing
that X − X̃ is zero on the support of ϕ and thus on the support of v(ϕ) = Lvϕ.
By linearity, the product rule, and the construction of X̃ we get:

∇vϕ · (X − X̃)|p = ∇vϕ · (X|U − X̃|U)|p = 0
= v(ϕ) · (X − X̃)|p + ϕ∇v(X − X̃)|p
= ϕ∇v(X − X̃)|p ,

which is, that ϕ∇v(X − X̃)|p is zero on the support of ϕ.
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The same argument can be used for v:

0 = ∇ϕ·(v|U−ṽ|U )X|p = ∇ϕ·(v−ṽ)X|p = ϕ · ∇v−ṽX|p .

This allows us to express v in a basis ∂i representation X = vi∂i, after choosing U
small enough such that we find a chart containing U :

∇vX|p = ∇vi∂iX|p = (vi∇∂iX)|p = vi(p)∇∂iX|p .

As before, by linearity, we only need to show, that ∇v−ṽX|p is zero, if v|p = ṽ|p:

∇v−ṽX|p = (vi(p)− ṽi(p))∇∂iX|p = 0∇∂iX|p = 0 .

Morally speaking, the term ∇v(p)X is like some kind of directional derivative of X in
direction of v(p) at the point p. It allows to compare the changing of the vector field
X around p with respect to a fixed tangent vector v(p). In that sense it connects the
fibers locally. Hence the name connection.

Definition C.2.12.
A linear connection is a connection over Γ(TM), i.e.

∇ : Γ(TM)× Γ(TM) −→ Γ(TM) .

One is tempted to interpret ∇ as (2,1) tensor field in this case. However, a tensor
field is linear in both arguments over C∞(M), while ∇ satisfies the product rule in the
second argument. That is, a connection is no tensor field.
Let {Ei} be a local frame, then a linear connection defines n3 functions, called

Christoffel symbols, by
∇EiEj = ΓkijEk .

These coefficients of the connection do not transform as tensor coefficients would, since
linear connections are no tensors, as explained above. Explicit calculations show, that
additional terms appear in transformations, related to the product rule.

Lemma C.2.13 (Frame representation of linear connections).
Let ∇ be a linear connection and {Ei} a local frame. Let v = viEi and u = uiEi
be vector field expanded in terms of the local frame, then it holds that:

∇vu =
(
v(uj) + viujΓkij

)
Ek .

Proof C.2.14.
This is a straightforward calculation using the defining properties of connections.
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Corollary C.2.15.
Using a coordinate frame one finds:

∇vu =
(
vi∂i(uj) + viujΓkij

)
∂k .

Remark C.2.16 (Notation in physics).
In the physical literature one often encounters terms like ∇µv

ν , called covariant
derivative. This is a shorthand notation for ∇∂µ(vν∂ν). Using the linearity of
the connection, we find the term usually used in the physical literature to define
∇µv

ν :
∇µv

ν ≡ ∇∂µ(vν∂ν) = ∂µ(vµ) + Γkµνvν∂k ≡ ∂µv
ν + Γkµνvν .

It is common to shorten the notation further, using

∂µv
ν ≡ vν,µ and ∇µv

ν ≡ vν;µ .

Definition and lemma C.2.17 (induced connection on tensors).
A linear connection ∇ induces a connection ∇̃ on every tensor bundle ⊗(r,s)(TM)
by the following conditions:

i) ∇̃ and ∇ are equal on Γ(TM), i.e. ∇vu = ∇̃vu.

ii) For functions we define ∇̃vf = v(f).

iii) For 1-forms we define (∇̃vω)(u) = ∇̃vω(u)− ω(∇̃vu).

iv) The connection satisfies the product rule for tensor products: ∇̃v(X ⊗ Y ) =
(∇̃vX)⊗ Y +X ⊗ ∇̃vY .

Proof C.2.18.
To proof the lemma, we need to check, that ∇̃ is a proper connection on the
respective vector bundle. This is a straightforward calculation, using, that tangent
vectors are derivatives. In the last case, one uses the bilinearity of tensor products
and demands linearity of ∇̃v concerning sums of tensors.

Theorem C.2.19.
The ∇-induced connection ∇̃ is unique.

Proof C.2.20.
Let ∇̂ be another induced connection. We want to show, that ∇̃vT = ∇̂vT for
every tensor T and every vector field v. By definition we have:

∇̂vu = ∇vu = ∇̃vu and ∇̂vf = v(f) = ∇̃vf .
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From this, we also find ∇̂vω = ∇̃vω for any 1-form. The rest follows from linearity
and the product rule.

Due to uniqueness we do not bother to mark the induced connection, and write ∇ in
all cases.

Lemma C.2.21.
Let x be a chart and {Γijk} the corresponding Christoffel symbols, then the covariant
derivative of a 1-form is given by:

∇vω = (vi∂i(ωk)− viωjΓjik)dxk .

Proof C.2.22.
∇vω = ∇vωkdx

k = v(ωk)dxk + ωk∇vdx
k = vi∂i(ωk)dxk + viωj∇∂idx

j .

Using the definition of ∇∂idx
j(u) we want to find an expression for ∇∂idx

j:

∇∂idx
j(u) = ∇∂idx

j(u)− dxj(∇∂iu
k∂k)

= ∂i(uj)− dxj
(
∂i(uk) · ∂k + ukΓ`ik∂`

)
= ∂i(uj)− ∂i(uk)δjk − ukΓ`ikδ

j
` = −ukΓjik = −Γjikdxk(u) .

Thus we have found ∇∂idx
j = −Γjikdxk and hence proven the lemma.

Corollary C.2.23 (Characteristic of Christoffel symbols on basis elements).
The covariant derivative of chart induced basis elements of tangent and cotangent
spaces are related to the Christoffel symbols by:

∇∂i∂j = Γkij∂k and ∇∂idx
j = −Γjikdxk .

This corollary allows to find the rule for the coordinates of general (r, s)-tensor fields.
Before we state how to calculate the covariant derivative of tensor fields in terms of
coordinates, we investigate the covariant derivative of tensors as multilinear maps.3

Theorem C.2.24.
Let T be a tensor field of rank (r, s), ω1, . . . , ωr 1-forms and v1, . . . , vs vector
fields, then the covariant derivative of T along u can be calculated as follows:

(∇uT )(ω1, . . . , ωr, v1, . . . , vs) = u(T (ω1, . . . , ωr, v1, . . . , vs))

−
r∑
`=1

T (ω1, . . . ,∇uω`, . . . , ωr, v1, . . . , vs)

−
s∑
`=1

T (ω1, . . . , ωr, v1, . . . ,∇uv`, . . . , vs) .

3Which is the natural definition of tensors.
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Proof C.2.25 (sketch of proof).
By definition we have (∇uω)(v) = ∇uω(v)−ω(∇uv) for 1-forms, that are essentially
rank (0, 1) tensors. To find an analogue for vector fields, we use the isomorphy of
finite dimensional vector spaces to their double dual spaces:

(∇uv)(ω) ≡ ω(∇uv) = ∇uω(v)− (∇uω)(v) ≡ ∇uv(ω)− v(∇uω) .
Any tensor can be written as sum of pure tensors by construction. Due to linearity
of connections we may assume without loss of generality, that T has the form:

T = X1 ⊗ . . .⊗Xr ⊗ Y1 ⊗ . . .⊗ Ys ,
where Xj are vector fields and Yj are 1-forms. To keep things short, yet illustrate
the general calculation we use T = X ⊗ Y :

(∇uT )(ω, v) = (∇v[X ⊗ Y ])(ω, v) = ((∇uX)⊗ Y +X ⊗∇uY )(ω, v)
= ((∇uX)⊗ Y )(ω, v) + (X ⊗∇uY )(ω, v)
= (∇uX)(ω) · Y (v) +X(ω) · (∇uY )(v)
= (∇uX(ω)) · Y (v)−X(∇uω) · Y (v)

+X(ω) · ∇uY (v)−X(ω) · Y (∇uv)
= ∇u(X(ω) · Y (v))−X(∇uω) · Y (v)−X(ω) · Y (∇uv)
= u((X ⊗ Y )(ω, v))− (X ⊗ Y )(∇uω, v)− (X ⊗ Y )(ω,∇uv)
= u(T (ω, v))− T (∇uω, v)− T (ω,∇uv) .

One can use corollary C.2.23 to find the coordinate expression for covariant derivatives
of tensor fields:

Lemma C.2.26 (Components of covariant derivative).
The components of the covariant derivative in direction ∂µ of a tensor field are:

(∇µT )i1...irj1...js =∂µ
(
T i1...irj1...js

)
+ Γi1ηµT

η...ir
j1...js + . . .+ ΓirηµT

i1...η
j1...js

− Γηj1µT
i1...ir

η...js − . . .− ΓηjsµT
i1...ir

j1...η .

Remark C.2.27.
There are further notations for the covariant derivative of tensors:

(∇µT )i1...irj1...js = T i1...irj1...js;µ = ∇µT
i1...ir

j1...js .

These notations may cause ambiguity, especially the last one. To avoid misunder-
standings, we will write ∇∂µT

i1...ir
j1...js if we mean the covariant derivative to act

on the components only, preserving ∇µ for the action on the whole object.

The last thing we need to take care about are contractions and how they behave in the
presence of covariant derivatives.
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Definition C.2.28.
Let T = X1 ⊗ . . .⊗Xr ⊗ Ω1 ⊗ . . .⊗ Ωs be a tensor field of rank (r, s). The con-
traction of the i-th contravariant component with the j-th covariant component
is the following (r − 1, s− 1) tensor field:

trij(T ) = Ωj(Xi)X1 ⊗ . . .⊗ X̂i ⊗ . . .⊗Xr ⊗ Ω1 ⊗ . . .⊗ Ω̂j ⊗ . . .⊗ Ωs ,

where the elements with hat are left out. The contraction is defined to be linear.

With Ωj(Xi) = (Ωj)µ(Xi)µ and due to linearity, contractions become relatively easy to
be written down in Ricci-notation:

(trij(T ))µ1...µr
ν1...νs = T µ1...α...µr

ν1...α...νs

The same index α in the lower and upper part indicates summation as usual. In
the presence of a covariant derivative, using the semicolon notation together with
contractions would usually need a convention about order. What does T µ1...α...µr

ν1...α...νs;ρ
mean? We could define either of the following possibilities:

T µ1...α...µr
ν1...α...νs;ρ ≡ (T µ1...α...µr

ν1...α...νs );ρ

or T µ1...α...µr
ν1...α...νs;ρ ≡ (∇µT )µ1...α...µr

ν1...α...νs .

However, such a choice is not necessary. The next theorem shows, that both definitions
are the same. That is, contractions and covariant derivatives commute.

Theorem C.2.29.
The covariant derivative commutes with any contraction:

∇vtrij(T ) = trij(∇vT )

Proof C.2.30.
By linearity we are free to choose T = X1 ⊗ . . .⊗Xr ⊗ Ω1 ⊗ . . .⊗ Ωs and denote
the reduced tensor by

T̃ = X1 ⊗ . . .⊗ X̂i ⊗ . . .⊗Xr ⊗ Ω1 ⊗ . . .⊗ Ω̂j ⊗ . . .⊗ Ωs

⇒ trij(T ) = Ωj(X1) · T̃ .

The covariant derivative will create a number of terms in a sum, acting only on
one (co)-vector at a time due to the product rule. Hence it will be convenient to
prove ∇vtrij(T )− trij(∇vT ) = 0, which is equivalent to the claim.

∇vtrij(T )− trij(∇vT ) = . . . = (∇vΩj(Xi)) · T̃ −
(
Ωj(∇vXi) · T̃ + (∇vΩj)(Xi)

)
· T̃

= (∇vΩj(Xi)− Ωj(∇vXi)− (∇vΩj)(Xi)) · T̃ = 0 · T̃ = 0 .

The fact, that∇vΩj(Xi)−Ωj(∇vXi)−(∇vΩj)(Xi) = 0 holds, follows from definition
C.2.17.

The same statement can be shown for partial derivatives in local coordinates. Thus
both index notations (comma and semicolon) behave well with contractions.
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Remark C.2.31.
In the following we will use a generalized version of contraction, allowing for
contractions of the form tr12(X1 ⊗X2), by using the flat and sharp isomorphisms:

tr12(X1 ⊗X2) = X1(X[
2) = X[

2(X1) = g(X1, X2) .

Furthermore, in this special case, we may drop the indices of the trace operator,
as there is no ambiguity.
In general, this trace and covariant derivatives do not commute. However, if the
connection is compatible with the metric (see definition C.3.17), all contractions
commute with covariant derivatives. The structure of the proof remains the same.
All one has to see is, that

∇vtr(X1 ⊗X2) = ∇vg(X1, X2) = g(∇vX1, X2) + g(X1,∇vX2)
= tr(∇vX1 ⊗X2) + tr(X1 ⊗∇vX2)
= tr(∇vX1 ⊗X2 +X1 ⊗∇vX2)
= tr(∇v(X1 ⊗X2)) .

C.3. Levi-Civita-connection

So far we were investigating the concept of general linear connections. These were not
related to the metric at all. Indeed, choosing a set of Christoffel symbols allows to
define a connection without knowledge about the metric at all. As we will see in this
chapter however, there is a unique torsion free connection, related to the metric, called
the Levi-Civita-connection.

C.3.1. Lie-derivative

To define the torsion of a connection we need a more general concept of directional
derivative, called Lie-Derivative. There are different ways to introduce this operator.
Here we choose the geometric definition using local flows:

Definition C.3.1.
Let v ∈ Γ(TM) be a vector field on M . A curve γ : (a, b)→M is called integral
curve of v, if for all t ∈ (a, b) the tangent vector of γ coincides with v:

Tγ(t)M 3 γ̇(t) = v|γ(t) ∀ t ∈ (a, b) .

The theorem about existence and uniqueness of solutions to first order differential
equations assures the existence of maximal integral curves for every initial value problem
of a smooth vector field. That is, for all p ∈ M and t0 ∈ R there exists an integral
curve γp : (ap, bp)→M , such that

γ̇p(t) = v|γp(t) ∀ t ∈ (ap, bp) and γp(t0) = p
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Figure C.3.: Sketch of a vector field (red) with its flow (blue).

hold. These integral curves define a map Φ: (ap, bp)×M →M by Φt(p) = γp(t). One
can show, that Φt is a local flow:

Φs+t = Φs ◦ Φt and Φ0 = IdM .

Definition C.3.2 (Lie-derivative).
Let v be a vector field, ω a k-form and f a function. The Lie-derivative in
direction of the vector field u with local flux Φt of these objects is defined by:

i) Luf = d

dt

∣∣∣∣∣
t=0

Φ∗tf ii) Luω = d

dt

∣∣∣∣∣
t=0

Φ∗tω

iii) Luv = d

dt

∣∣∣∣∣
t=0

(Φ−t)∗v ,

where Φ∗t denotes the pullback and (Φt)∗ the push forward of the map Φt.

p

Φt(p)

v|p

(Φ−t)∗v|p
v|Φt(p)

Figure C.4.: Illustration of the transport of tangent vectors by a local flow.

The idea behind Lie-derivatives is, as in the case of connections, to provide an alternative
to the directional derivative of Rn. As before, there is no natural way to compare
tangent vectors from different tangent spaces. In the case of connections, one choses
arbitrary functions4, the Christoffel symbols, that define a connection. In the case
of Lie-derivatives, the existence of local flows is used to compare tangent vectors of
different tangent spaces. In figure C.4 this is illustrated before the limit of the derivative

4or the ones of the Levi-Civita-connection, if the additional structure of a metric is available.
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is taken. The tangent vector v|p ∈ TpM of the vector field v ∈ Γ(TM) can be compared
to the tangent vector v|Φt(p) ∈ TΦt(p)M by comparing it to the push forwarded5 vector
(Φ−t)∗v|p ∈ TpM .
It is not hard to show, that a Lie-derivative is no connection. One finds ready

examples which show, that Lv is not linear in v over C∞(M), but only over R or C.
By the way we constructed, this is hardly surprising. To have the existence theorem of
local flows apply, one needs to provide a vector field in at least a small neighborhood.
A tangent vector is not enough, i.e. Lvw|p cannot be reduced to Lv(p)w|p. This will be
the reason, we will not define geodesics by Lie-derivatives.

Corollary C.3.3.
Let f be a function and u be a vector field, then the Lie-derivative coincides with
the application of u as derivation:

Luf = u(f) .

Proof C.3.4.

(Luf)(p) =
(
d

dt

∣∣∣∣∣
t=0

Φ∗tf
)

(p) = d

dt

∣∣∣∣∣
t=0

f(Φt(p)) = d

dt

∣∣∣∣∣
t=0

f(γp(t))

= dfp(γ̇p(t)) = dfp(u(p)) = u(f)|p .

This corollary gives a simple formula to calculate the Lie-derivative of a function in
terms of coordinates:

Lu(f) = u(f) = uµ∂µ(f) = uµf,µ .

One can show that the Lie-derivative of differential forms and vector fields has the
following alternative expressions:

Theorem C.3.5 (Commutator and Cartan-formula).
Let u, v be vector fields and ω a k-form. Then it holds that:

Luv = [u, v] and Luω = (uy ◦ d+ d ◦ uy)ω .

The latter is known as Cartan-formula

Proof C.3.6 (only for vector fields and functions).
Using the limit definition for time derivatives and the definition of tangent vectors

5With the inverse map. Some authors define that as pullback of vector fields.
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as derivations, we find:

(Luv) (f) = lim
t→0

(Φ−t)∗v − (Φ0)∗v
t

(f) = lim
t→0

(Φ−t)∗v − v
t

(f)

= lim
t→0

1
t

({(Φ−t)∗v}(f)− v(f)) = lim
t→0

1
t
(v(f ◦ Φ−t)− v(f))

= lim
t→0

1
t
(v(f ◦ Φ−t)− v(f) + {Φ∗tv(f ◦ Φ−t)} − {Φ∗tv(f ◦ Φ−t)})

= lim
t→0

Φ∗t
{
v

(
f ◦ Φ−t − f

t

)}
+ lim

t→0

Φ∗−t{v(f)} − v(f)
t

= lim
t→0

v

(
f ◦ Φ−t − f

t

)
+ lim

t→0

Φ∗−t{v(f)} − v(f)
t

= v(L−uf) + Lu(v(f)) = u(v(f))− v(u(f)) = [u, v](f)

In the last steps we used corollary C.3.3 and the fact, that Φ0 = IdM .
The proof for k-forms is rather involved, thus we only show the case for k = 0,

i.e. functions here:

uydf + d(uyf) = uydf = df(u) = u(f) = Lu(f) .

These alternative ways of calculating the Lie-derivative allow to find the coordinate
expressions for vector fields and 1-forms, rather easily:

Corollary C.3.7.
In coordinates the Lie-derivative in direction u of a vector field v and a 1-form ω
are:

Luv = (uµ∂µ(vν)− vµ∂µ(uν)) ∂ν ,
Luω = (uµ∂µ(ων) + ωµ∂ν(uµ)) dxν .

Proof C.3.8.
For the definition of tangent vector fields to be point wise derivations, we demand
f to be C∞(M). Thus partial derivatives commute.

(Luv) (f) = [u, v](f) = u(v(f))− v(u(f)) = uµ∂µ(vν∂ν(f))− vν∂ν(uµ∂µ(f))
= uµ∂µ(vν)∂ν(f)− uµvν∂µ∂ν(f)− vν∂ν(uµ)∂µ(f) + uµvν∂ν∂µ(f)
= uµ∂µ(vν)∂ν(f)− vν∂ν(uµ)∂µ(f)
= (uµ∂µ(vν)∂ν − vν∂ν(uµ)∂µ) (f) = (uµ∂µ(vν)∂ν − vµ∂µ(uν)∂ν) (f) .

For the 1-form we use, that uy is a linear antiderivation:

Luω = uydω + d(uyω) = uµ∂µyd(ωνdxν) + d(ωνuµ ∂νydxν)
= uµ∂η(ων) · ∂µy(dxη ∧ dxν) + d(ωνuν)
= uµ∂η(ων)(δηµdxν − δνµdxη) + (∂µ(ων)uν + ων∂µ(uν))dxµ
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= uµ∂µ(ων)dxν − uµ∂η(ωµ)dxη + ∂µ(ων)uνdxµ + ων∂µ(uν)dxµ

= uµ∂µ(ων)dxν + ων∂µ(uν)dxµ = uµ∂µ(ων)dxν + ωµ∂ν(uµ)dxν .

Remark C.3.9.
A result of the last corollary is, that the components of Lie-derivatives only utilize
partial derivatives of functions. With definition C.2.17 we may rewrite these in
terms of covariant derivatives, i.e.

Luv =
(
uµ∇∂µ(vν)− vµ∇∂µ(uν)

)
∂ν ,

Luω =
(
uµ∇∂µ(ων) + ωµ∇∂ν (uµ)

)
dxν ,

which can come handy in some calculations. (Here we have used our convention
from remark C.2.27).

Lemma C.3.10.
The Lie-derivative can be written with covariant derivatives, if the corresponding
Christoffel symbols are symmetric in the lower indices for all coordinate-frames:

LXY = ∇XY −∇YX .

Proof C.3.11.

LXY = [X, Y ] = X i∂i(Y j)∂j − Y j∂j(X i)∂j = X i∇∂i(Y j)∂j − Y j∇∂j(X i)∂j
= ∇X(Y )−X iY jΓkij∂k −∇Y (X) +X iY jΓkji∂k = ∇XY −∇YX .

We now know how to compute the Lie-derivative for vector fields and 1-forms (in fact
k-forms). If we demand6 for the Lie-derivative to satisfy the product rule for tensor
products:

Lu(S ⊗ T ) := (LuS)⊗ T + S ⊗ LuT ,

we are able to differentiate, in the Lie-sense, arbitrary Tensors.

Example C.3.12.
Let u be a vector field and g = gµνdx

µ ⊗ dxν a metric tensor. The Lie-derivative
in direction u is:

Lug = Lu(gµνdxµ)⊗ dxν + gµνdx
µ ⊗ Ludxν

= (uη∂η(gµν)dxµ + gην∂µ(uη)dxµ)⊗ dxν + gµνdx
µ ⊗ ∂η(uν)dxη

= (uη∂η(gµν) + gην∂µ(uη)) dxµ ⊗ dxν + gµν∂η(uν)dxµ ⊗ dxη

6Either that, or one defines pullbacks of tensor fields. In that case the product rule appears naturally.
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= (uη∂η(gµν) + gην∂µ(uη)) dxµ ⊗ dxν + gµη∂ν(uη)dxη ⊗ dxν

In the last step we relabeled the summation indices (which is always possible) to
find the index rule of the physical literature:

Lugµν = uηgµν,η + gηνu
η
,µ + gµηu

η
,ν

From corollary C.3.7 and the behavior of the product rule together with the multilin-
earity of tensor products one can derive the coordinate expression for Lie-derivatives of
arbitrary tensors:

(LuT )i1...irj1...js = uηT i1...irj1...js,η

− T η...irj1...js u
i1
,η − . . .− T

i1...η
j1...js u

ir
,η

+ T i1...irη...js u
η
,j1 + . . .+ T i1...irj1...η u

η
,js .

To conclude this section we consider Tensors again as multilinear maps and show
the behavior of Lie-derivatives acting on these maps. We also show again, that Lie-
derivatives, like covariant derivatives, commute with contractions.

Theorem C.3.13.
Let T be a tensor field of rank (r, s), ω1, . . . , ωr 1-forms and v1, . . . , vs vector
fields, then the Lie-derivative of T along u can be calculated as follows:

(LuT )(ω1, . . . , ωr, v1, . . . , vs) = Lu(T (ω1, . . . , ωr, v1, . . . , vs))

−
r∑
`=1

T (ω1, . . . ,Luω`, . . . , ωr, v1, . . . , vs)

−
s∑
`=1

T (ω1, . . . , ωr, v1, . . . ,Luv`, . . . , vs) .

Proof C.3.14.
We can copy the proof of theorem C.2.24, if we can proof a similar behavior for the
Lie-derivative acting on 1-forms and vectors. The remaining properties that were
used in the proof are linearity and the product rule, which apply to Lie-derivatives
as well. There is a coordinate free way to show the following, involving techniques
also used to prove Cartan-formula. We can however use arbitrary coordinates, as
long as we do not use special properties of a chosen system:

Lu ω(v) = u(ω(v)) = uα∂α(ωηvη) = uα(ωη,αvη + ωηv
η
,α) .

On the other hand we have, using corollary C.3.7:

(Luω)(v) + ω(Luv) = ωη,αu
αvη + ωαu

α
,ηv

η + ωηu
αvη,α − ωηvαuη,α

= ωη,αu
αvη + ωηu

αvη,α = uα(ωη,αvη + ωηv
η
,α) = Lu ω(v) .
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Subtraction of ω(Luv) gives the desired result:

(Luω)(v) = Lu ω(v)− ω(Luv) .

At this point we can copy the proof of theorem C.2.24.

Theorem C.3.15.
The Lie-derivative commutes with any contraction:

Lvtrij(T ) = trij(LvT )

Proof C.3.16.
The proof of theorem C.2.29 carries over without changes.

C.3.2. Torsion and metric compatibility

The goal of this chapter was to connect the connection with the metric. We took a
rather long detour, exploring the details of the Lie-derivative. However, that will not
have been a waste of time, for Lie-derivatives play a central role in the context of
symmetries and Killing fields.

Definition C.3.17.
Let g be a Riemannian metric and ∇ a linear connection. The connection is said
to be metric/compatible with g if for all u, v, w ∈ Γ(TM) the product rule
is fulfilled:

∇ug(v, w) = g(∇uv, w) + g(v,∇uw) .

Lemma C.3.18.
Compatibility of a connection ∇ with a metric g is equivalent to ∇•g ≡ 0, where
∇•g is a map defined in the natural way:

∇•g : Γ(TM)× Γ(TM)× Γ(TM) −→ Γ(TM)
(u, v, w) 7−→ (∇ug)(v, w) .

Proof C.3.19.
The lemma follows from theorem C.2.24:

(∇ug)(v, w) = ∇ug(v, w)− g(∇uv, w)− g(v,∇uw)

∇ug ≡ 0 ⇔ 0 = ∇ug(v, w)− g(∇uv, w)− g(v,∇uw)
⇔ ∇ug(v, w) = g(∇uv, w) + g(v,∇uw) .
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Remark C.3.20.
The condition ∇g = 0 can be written in coordinates as ∇ηgµν = 0.

Compatibility withe the metric relates the connection the the metric, yet is not enough
to determine the connection uniquely. Additionally requiring the connection to be
torsion free does however, allowing to calculate the Christoffel symbols in terms of the
metric.

Definition C.3.21.
The Torsion tensor field T of a linear connection is a rank (2, 1) tensor field
T : Γ(TM)× Γ(TM)→ Γ(TM) defined by

T (v, w) = ∇vw −∇wv − [v, w] .

A linear connection is called symmetric, if the torsion vanishes identically, i.e.

∇vw −∇wv = [v, w] ⇔ T (v, w) ≡ 0 .

Lemma C.3.22.
A connection is symmetric, if and only if the Christoffel symbols for coordinate
frames are symmetric in the lower indices, i.e. Γkij = Γkji.7

Proof C.3.23.
Let {∂`} be a coordinate frame. By linearity we have the following equivalence
from the definition of torsion:

∇∂i∂j −∇∂j∂i = [∂i, ∂j] ⇔ T ≡ 0 .

With corollary C.3.7 we see, that Lie-derivatives of the form [∂i, ∂j] vanish. Also
using the definition of the Christoffel symbols we find:

T ≡ 0 ⇔ 0 = ∇∂i∂j −∇∂j∂i = (Γkij − Γkji)∂k ⇔ Γkij = Γkji .

The torsion is an interesting property in itself, describing the drill of tangent vectors
along a geodesic. Since torsion plays a minor role in non quantum gravity, we will
not investigate this object any further, and only use torsion to determine a unique
connection that is linked to the metric.

7This is not necessarily true for other local frames.
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Theorem C.3.24 (fundamental lemma of Riemannian geometry ).
Let (M, g) be a (pseudo) Riemannian manifold. There exists a unique linear
connection on M , that is symmetric and compatible with the metric, called the
Levi-Civita-connection.

Proof C.3.25 (identical in [Lee97]).
1) We show uniqueness first, since it will give rise to a simpler construction method

to prove existence. Let u, v, w be arbitrary vector fields. Writing down the
metric compatibility condition for cyclic permutations of u, v, w and using the
symmetry of the connection yields:

∇ug(v, w) = g(∇uv, w) + g(v,∇uw) = g(∇uv, w) + g(v,∇wu) + g(v, [u,w])
∇vg(w, u) = g(∇vw, u) + g(w,∇vu) = g(∇vw, u) + g(w,∇uv) + g(w, [v, u])
∇wg(u, v) = g(∇wu, v) + g(u,∇wv) = g(∇wu, v) + g(u,∇vw) + g(u, [w, v]) .

Adding the first two equations and subtracting the third one, we get after
solving for g(∇uv, w) the following equation:

g(∇uv, w) = 1
2

(
∇ug(v, w) +∇vg(w, u)−∇wg(u, v)

− g(v, [u,w])− g(w, [v, u])− g(u, [w, v])
)

= 1
2

(
u(g(v, w)) + v(g(w, u))− w(g(u, v))

− g(v, [u,w])− g(w, [v, u])− g(u, [w, v])
)
. (C.1)

We see, that the right-hand side does not depend on the connection. Thus, if
there is another symmetric connection ∇̃, that is compatible with the metric,
we find:

g(∇uv − ∇̃uv, w) = 0 ∀ u, v, w ,

which is equivalent to ∇uv−∇̃uv = 0 and respectively ∇uv = ∇̃uv. This proves
uniqueness.

2) If there is a symmetric connection that is compatible with the metric, it is
unique. If we can construct such a connection locally in coordinates, uniqueness
guarantees agreement on overlaps. Let (U, x) be a chart of M . We want to
define ∇ using (C.1). With corollary C.3.7 we see, that Lie-derivatives of the
form [∂i, ∂j] vanish, and find:

g(∇∂i∂j, ∂k) = 1
2

(
∂i(g(∂j, ∂k)) + ∂j(g(∂k, ∂i))− ∂k(g(∂i, ∂j))

)
.

Using the Christoffel symbols and the notational convention ∂i(g(∂j, ∂k)) = gjk,i
we find a formula for the Christoffel symbols:

Γ`ijg`k = 1
2(gjk,i + gki,j − gij,k) .
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With g`kgkm = δm` we recover the formula most prevalent in the literature:

Γmij = 1
2g

mk(gjk,i + gki,j − gij,k) .

The Christoffel symbols define the connection and vice versa. We can see, that
the Christoffel symbols defined above are symmetric in the lower indices. By
lemma C.3.22 the corresponding connection is symmetric. A short calculation
shows, that the connection is also compatible with the metric, i.e. ∇g = 0, by
lemma C.3.18.

Corollary C.3.26.
The Christoffel symbols of the Levi-Civita-connection can be calculated as follows:

Γkij = 1
2g

km(gjm,i + gmi,j − gij,m) .

Theorem C.3.27 (Naturality of the Levi-Civita-connection).
Let ϕ : M → M̃ be an isometry between two Riemannian manifolds (M, g)
and (M̃, g̃), i.e. a diffeomorphism such that ϕ∗g̃ = g. Also let ∇ be the Levi-
Civita-connection of M and ∇̃ the Levi-Civita-connection of M̃ , then it holds
that

ϕ∗(∇XY ) = ∇̃ϕ∗X(ϕ∗Y ) .

Proof C.3.28 (Idea of the proof).
Define the pullback connection ϕ∗∇̃ on M by

(ϕ∗∇̃)XY = ϕ−1
∗ (∇̃ϕ∗X(ϕ∗Y )) .

It remains to show, that ϕ∗∇̃ is a connection on M that is compatible with g and
torsion free. If so, ϕ∗∇̃ = ∇ due to the uniqueness of the Levi-Civita-connection,
and the claim follows:

ϕ∗((ϕ∗∇̃)XY ) = ϕ∗(∇XY ) = (∇̃ϕ∗X(ϕ∗Y )) .

C.4. Geodesics

In Euklidean spaces there exists a special set of curves, the straight lines. These give rise
to affine structures. More physically speaking, they define what is called acceleration
free movement. To define acceleration free movement on general (pseudo) Riemannian
manifolds a similar concept is needed. The motivation to introduce covariant derivatives
is also the reason why we cannot extend the classical definition directly. The second
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derivative of curves depends on the choice of coordinates.8 To define a class of curves
similar to straight lines, called geodesics, we will need a generalization of second
derivatives. In the following, if not specified otherwise, a curve means a smooth map
γ : I →M , where I is an interval of R.

C.4.1. Vector fields along curves

Let γ : I → M be a curve. A vector field along curve is a map V : I → TM with
V (t) ∈ Tγ(t)M for every t ∈ I. We will denote the set of vector fields along the curve γ
in the style of sections with Γ(γ). The vector field V is called extendible if there are a
neighborhood around γ(I) and a smooth vector field Ṽ in that neighborhood, such that
V (t) = Ṽ |γ(t) holds for all t ∈ I. The vector field Ṽ is called an extension of V . To be
extendible is no trivial property. For example the tangent field γ̇(t) is not extendible if
there are self intersections, as can be seen in figure C.5. On the other hand, it can be
shown, that the restriction of a smooth vector field to a curve is a smooth vector field
along the curve.

p

Figure C.5.: Illustration of an extendible vector field (blue) and a non-extendible vector field (red).
The problem of the red vector field is, that any extension would have to assign two different tangent
vectors to the point p.

Definition and Lemma C.4.1.
Let ∇ be a linear connection. For each curve there is a unique operator
D∇t : Γ(γ)→ Γ(γ) induced by ∇, that satisfies the following properties:

i) Linearity over R:

D∇t (aV + bW ) = aD∇t (V ) + bD∇t (W ) .

ii) Product rule:

D∇t (fV ) = ḟV + fD∇t (V ) ∀ f ∈ C∞(I) .

iii) If V is extendible, then for any extension Ṽ it holds that
D∇t (V (t)) = ∇γ̇(t)Ṽ .

8See figure C.2 for an example.
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Proof C.4.2.
It is best to show uniqueness first. So suppose Dt is such an operator. Similar
to proof C.2.11 one can show, that DtV |t0 only depends on the values of V in an
arbitrary small interval (t0 − ϕ, t0 + ε). We may choose coordinates in a small
neighborhood around γ(t0) and write9

V (t) = V j(t)∂j .

Since ∂j are extendible, and by the assumed properties of Dt we have:

DtV |t0 = V̇ j(t0)∂j + V j(t0)∇γ̇(t0)∂j

=
(
V̇ k(t0) + V j(t0)γ̇i(t0)Γkij(γ(t0))

)
∂k .

The right hand side does only depend on ∇, proving the uniqueness Dt = D∇t .
Existence may now be proven by defining D∇t by the above equation and showing
that the properties are satisfied. Due to uniqueness this definition agrees on any
overlap of charts proving well-definiedness.

Corollary C.4.3.
The operator D∇t , called covariant curve derivative can be calculated in terms
of coordinates as follows:

D∇t V |t0 =
(
V̇ k(t0) + V j(t0)γ̇i(t0)Γkij(γ(t0))

)
∂k .

In the spacial case of V (t) = γ̇(t) one finds the definition of the physical literature:

D∇t γ̇|t0 =
(
γ̈k(t0) + γ̇j(t0)γ̇i(t0)Γkij(γ(t0))

)
∂k .

Remark C.4.4.
In the case of the Levi-Civita-connection the Christoffel symbols of affine coordi-
nates vanish. Thus the corollary proves the claim of remark 2.5.1.

In the following, if the connection is understood, we will not bother to write D∇t any
longer and simply use Dt. In the literature there are differing notations, including ∇

dt
,

D
Dt
, d
Dt

or D
dt
.

C.4.2. Geodesics and parallel transport

Straight lines in Rn are those curves, whose second derivative d2

dt2
γ(t) vanishes. Physically

speaking, the velocity γ̇(t) does not change along the curve. The way we constructed
the connection allows to generalize such a statement. Loosely speaking ∇γ̇(t)γ̇(t) would
mean, that around γ(t) the vector field γ̇(t) does not change. This is the property, that

9This does not require extendibility yet, since V (t0) is uniquely extendible even on a self intersection,
if the interval around t0 is chosen small enough.
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generalizations of straight lines should satisfy. However, γ̇(t) is only defined on γ(I),
being no proper smooth vector field on M . For that reason we defined Dt, leading to
the following definition:

Definition C.4.5.
Let ∇ be a linear connection. A geodesic corresponding to ∇ is a curve γ such
that Dtγ̇(t) vanishes identically:

Dtγ̇(t) = 0 ∀t ∈ I .

With corollary C.4.3 the geodesic equation Dtγ̇(t) = 0 is exactly the one from the
motivation at the beginning of this chapter, yet in a more general context of linear
connections:

γ̈k(t) + γ̇j(t)γ̇i(t)Γkij(γ(t)) = 0
By the definition it is still questionable, if geodesics exist at all. With the theorem
about existence and uniqueness of solutions to first order differential equations, using
the coordinate form of the geodesic equation, one can prove the following lemma:

Lemma C.4.6 (Existence of geodesics).
For every pair (p, v) ∈ TM there exists a unique geodesic γ : I →M with maximal
interval, such that γ(0) = p and γ̇(0) = v hold.

It is convenient to refer to such a geodesic with γ(p,v). Reparametrization allows to
choose t0 instead of 0 if needed.
We defined geodesics such that γ̇ does not change locally. We realized that be

demanding Dtγ̇(t) = 0. In Euklidean space, a vector field that does not change, i.e.
a constant vector field, is said to consist of parallel vectors. This motivates the next
definition:

Definition C.4.7.
A vector field V along a curve γ is called parallel along γ, if DtV (t) = 0 holds
for all t.

Again, writing the condition DtV (t) = 0 in coordinates, using the theorem about
differential equations and inspecting the intersection of chart domains results in the
following lemma:

Lemma C.4.8.
Let γ be a curve and V0 be a tangent vector of Tγ(t0)M . There exists a unique
parallel vector field V along γ, called the parallel translate of V0, such that
V (t0) = V0.

Using this lemma, we can define an operator that parallel translates vectors along a
curve, called parallel transport:

P γ
t0t1 : Tγ(t0)M −→ Tγ(t1)M, v = V (t0) 7−→ P γ

t0t1v = V (t1) .

One can show, that the parallel transport is a linear isomorphism.
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Lemma C.4.9.
The following statements are equivalent:

i) The connection ∇ is compatible with the metric g.

ii) For all vector fields V,W along a curve γ the following equation holds:

d

dt
g(V (t),W (t)) = g(DtV (t),W (t)) + g(V (t), DtW (t)) .

Proof C.4.10.
Choose a chart around γ(t). Then, as in proof C.4.2 we can write the vector fields
in the tangent basis:

d

dt
g(V (t),W (t)) = d

dt
V i(t)W j(t)gγ(t)(∂i, ∂j) = d

dt
V i(t)W j(t)gij|(γ(t))

= g(V̇ i(t)∂i,W j(t)∂j) + g(V i(t)∂i, Ẇ j(t)∂j)
+ V i(t)W j(t) · dgij(γ̇(t))|γ(t)

= g(V̇ i(t)∂i,W j(t)∂j) + g(V i(t)∂i, Ẇ j(t)∂j)
+ V i(t)W j(t) · γ̇k(t)∂k(gij)(γ(t)) .

The right hand side of the equation from claim ii) can be expanded as well:

gγ(t)(DtV (t),W (t)) + gγ(t)(V (t), DtW (t))
= g(V̇ i(t)∂i,W j(t)∂j) + g(V i(t)∂i, Ẇ j(t)∂j)

+ g(V̇ j(t)γ̇j(t)Γkij(γ(t))∂k,W j(t)∂j)
+ g(V i(t)∂i, Ẇ j(t)γ̇j(t)Γkij(γ(t))∂k) .

Comparing both equations with the claim shows:

d

dt
g(V (t),W (t)) = g(DtV (t),W (t)) + g(V (t), DtW (t)) ,

⇔ V i(t)W j(t)γ̇k(t)∂k(gij)(γ(t)) = g(V̇ j(t)γ̇j(t)Γkij(γ(t))∂k,W j(t)∂j)
+ g(V i(t)∂i, Ẇ j(t)γ̇j(t)Γkij(γ(t))∂k) ,

⇔ ∂kg(∂i, ∂j) = ∇kg(∂i, ∂j) = g(Γkij∂k, ∂j) + g(∂i,Γkij∂k) .
The last equation is the condition for ∇ to be compatible with the metric, written
in coordinates.

Corollary C.4.11.
If the connection is compatible with the metric, then the following properties follow
immediately:
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i) Let V,W be parallel along the curve, then g(V,W ) is constant along the curve.

ii) The parallel transport is an isometry.

(On can even show, that these claims are equivalent to each other and those of the
last lemma.)

Geodesics with respect to the Levi-Civita-connection are calledRiemannian geodesics.
As long as we will be concerned with the Levi-Civita-connection, we will simply use the
term geodesic.

C.4.3. Riemannian normal coordinates

Although geodesics exist for all (p, v) ∈ TM , the maximal interval for γ(p,v) need not
be large enough to define γ(p,v)(1). We define the set of pairs (p, v) ∈ TM , that allow
γ(p,v)(1):

E :=
{

(p, v) ∈ TM
∣∣∣ γ(p,v) is defined on an interval containing [0, 1]

}
.

Definition C.4.12.
The exponential map exp: E →M is defined by exp(p, v) ≡ expp(v) ≡ γ(p,v)(1).

In the following we give some properties of the exponential map without proof (see
[Lee97] for the proofs):

Proposition C.4.13.
i) The set E is an open subset of TM containing (0, 0). The restriction Ep is

star shaped.

ii) The exponential map is smooth.

iii) The geodesic γ(p,v) is given by γ(p,v)(t) = expp(tv) for all t such that both
sides are defined.

iv) Rescaling property: For all (p, v) ∈ TM and c, t ∈ R it holds that

γ(p,cv)(t) = γ(p,v)(ct) ,

whenever one side is defined.

Lemma C.4.14.
For all p ∈M , there are neighborhoods U around the origin of TpM and V around
p, such that expp : U → V is a diffeomorphism.

Proof C.4.15.
By the theorem of inverse functions we only need to show, that (expp)∗ is invertible
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at 0 ∈ TpM . Identifying T0(TpM) ∼= TpM we calculate (expp)∗v:

(expp)∗v = d

dt

∣∣∣∣∣
t=0

expp(tv) = γ(p,v)(t) = v ⇒ (expp)∗ = IdTpM .

If U is star shaped, then V is called normal neighborhood. There is a technical
proof, that for every p ∈M there is a normal neighborhood.10 The last lemma allows to
find a diffeomorphism V → Rn, that is a chart and hence a coordinate system, whenever
V is a normal neighborhood.
Let V be a normal neighborhood around p ∈M and {Ei} be an orthonormal basis

of TpM . The basis defines an isomprhism

E : Rn → TpM by


x1

...
xn

 7−→ xiEi .

Since expp is an isomorphism, there exists exp−1
p : V → U ⊂ TpM . Thus ϕ := E−1 ◦

exp−1
p : V → Rn is a diffeomorphism, and by definition (V, ϕ) is a chart of M .

γ(p,E1)

p

γ(p,E2)
TpM

E2

E1

Figure C.6.: The Idea behind Riemannian normal coordinates is as follows: Choose an orthonormal
basis (here (E1, E2)) of the tangent space TpM . To any vector exists a geodesic, especially to E1 and
E2. To a point q near p on M we assign the special tangent vector V of TpM which defines a geodesic
γ(p,V ) such that γ(p,V )(0) = p and γ(p,V )(1) = q hold. The coordinates of q are then the coordinates of
V with respect to the initially chosen orthonormal basis.

Definition C.4.16.
Any coordinate system (V, ϕ) defined as above is called Riemannian normal
coordinate system.

Theorem C.4.17 (Properties of Riemannian normal coordinates).
i) Let v = vi∂i be an element of TpM . Any geodesic γ(p,v) passing through p

10Even more, the proof shows, that there is a uniformly normal neighborhood. A concept we will not
use here.
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has the following particular easy form in Riemannian normal coordinates:

γ(p,v)(t) = (tv1, . . . , tvn).

ii) The coordinates of p are (0, . . . , 0).

iii) The first partial derivatives of gij and the Christoffel symbols of the Levi-
Civita-connection vanish at p.

Proof C.4.18.
By construction, the normal coordinates ϕi are given by ϕi = (E−1 ◦ exp−1

p )i =
ϑi ◦E−1 ◦ exp−1

p . From proposition C.4.13 we know, that any geodesic γ(p,v)(t) can
be written as γ(p,v)(t) = expp(tv). Thus we have:

ϕi(γ(p,t)(t)) =
(
ϑi ◦ E−1 ◦ exp−1

p ◦ expp
)

(tv) = ϑi(E−1(tv)) = tϑi(vjej) = tvi ,

proving the first claim. Since γ(p,v)(0) = p, the second claim follows immediately
from i).
Although vanishing Christoffel symbols follow directly from vanishing partial

derivatives of the components of the metric, it is easier to prove the claim about
the Christoffel symbols first. Using the coordinate expression of Dt, and normal
coordinates for the geodesic γ(p,v)(t) we find:

0 = Dtγ(p,v)(t) = d2

dt2
ϕk(γ(p,v)(t)) + Γkij(γ(p,v)(t))ϕi(γ̇(p,v)(t))ϕj(γ̇(p,v)(t))

= d2

dt2
tvk + Γkij(γ(p,v)(t))vivj = Γkij(γ(p,v)(t))vivj .

For all v ∈ TpM all geodesics γ(p,v)(t) satisfy γ(p,v)(0) = p.11Then we get (by
evaluating Dtγ(p,t)(0)):

Γkij(p)vivj = 0 ⇒ Γkij(p) + Γkji(p) = 0 .

Since Christoffel symbols of a torsion free connection (e.g. Levi-Civita) are sym-
metric in the lower indices, we found Γkij(p) = 0. Using metric compatibility in
coordinate form (see end of proof C.4.10) we find the first part of the third claim:

∂k(gij(p)) = ∂kg(∂i, ∂j)|p = g(Γkij∂k, ∂j)|p + g(∂i,Γkij∂k)|p
= Γkij(p)gkj(p) + Γkij(p)gik(p) = 0 .

11It is important to evaluate at the point t = 0. Only there, the Christoffel symbols do not depend on
v, i.e. are constant with respect to v.
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C.5. Curvature

The meaning of intrinsic curvature differs from the intuition we have about curved
surfaces of curves. The goal of this section is to define a curvature, that can be measured
without relying on an embedding. An example for the difference between intrinsic and
extrinsic curvature can be found using a sphere and a cylinder. It is possible to draw
a triangle of geodesics with a total angle sum larger than π on a sphere but not on a
cylinder. A more intuitive way to see the difference is the following: Without stretching
overlapping and creasing, it is possible ro obtain a cylinder from a piece of paper. Yet
that is not possible with a sphere. The reason is, that the cylinder has no intrinsic, but
only extrinsic curvature.

C.5.1. Riemannian curvature

A way to define a computational tool to determine intrinsic curvature is to observe the
following behavior of covariant derivatives with respect to the Levi-Civita-connection
for Euklidean spaces (e.g. Rn with standard metric):

∇X∇YZ −∇Y∇XZ = (X(Y (Zk))− Y (X(Zk)))∂k = ∇[X,Y ]Z .

This condition, called flatness condition, does not only hold for Euklidean spaces,
which we understand as the prime example of flat spaces, but for all manifolds that
are locally isometric to Rn due to the naturality of the Levi-Civita-connection. That
motivates the definition of the Riemannian curvature endomorphism:

Definition C.5.1.
The Riemannian curvature endomorphism is the map R : Γ(TM) ×
Γ(TM)× Γ(TM)→ Γ(TM), defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z = [∇X ,∇Y ]Z −∇[X,Y ]Z .

Loosely speaking, the curvature endomorphism measures how much the flatness condition
fails, and hence defining an intrinsic curvature. The commutator of partial derivatives
vanishes, leading to a simple basis expression for R:

R(∂i, ∂j)∂k = [∇∂i ,∇∂j ]∂k .

Showing that R is multilinear over C∞(M) shows, that the curvature endomorphism is
a tensor, called the Riemann (curvature) tensor:

R = R `
ijk dx

i ⊗ dxj ⊗ dxk ⊗ ∂` with R(∂i, ∂j)∂k = R `
ijk ∂` .

Corollary C.5.2.
The coefficients of the Riemann tensor in terms of the Christoffel symbols are:

R `
ijk = ∂iΓ`jk − ∂jΓ`ik + ΓηjkΓ`iη − ΓηikΓ`jη .
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Proof C.5.3.

R `
ijk ∂` = R(∂i, ∂j)∂k = [∇∂i ,∇∂j ]∂k = ∇∂i∇∂j∂k −∇∂j∇∂i∂k

= ∇∂iΓ`jk∂` −∇∂jΓ`ik∂`
=
(
∂iΓ`jk

)
∂` + Γ`jkΓ

η
i`∂η −

(
∂jΓ`ik

)
∂` − Γ`ikΓ

η
j`∂η

=
((
∂iΓ`jk

)
+ ΓηjkΓ`iη −

(
∂jΓ`ik

)
− ΓηikΓ`jη

)
∂` .

In the last line we have relabeled dummy indices.

A Riemannian manifold is called flat if for every point p ∈ M there are an open
neighborhood U around p and an isometry into an open subset of (Rn, 〈·, ·〉), φ : U →
φ(U) ⊂ R. A lengthy proof (see [Lee97]) shows, that the manifold is flat, if and only if
R ≡ 0.

Remark C.5.4.
There are different sign conventions for the curvature tensor in the literature, e.g.
:

R(∂i, ∂j)∂k = −R `
ijk ∂` .

With the symmetries stated in the next subsection, one finds that

−R `
ijk = −R`

kji = R`
kij .

C.5.2. Symmetries of the Riemann tensor

To find the symmetries of the Riemann tensor it is convenient to define an isomorphic
tensor field, that is completely covariant, i.e. has only lower indices.

Definition C.5.5.
The covariant Riemann tensor R[ is defined by lowering the last index of R.

For the coordinates we get
Rijkm = g`mR

`
ijk .

In the coordinate free language R[ is defined by

R[(X, Y, Z,W ) = g(R(X, Y )Z,W ) .

Theorem C.5.6.
Let X, Y, Z,W be vector fields. The covariant Riemann tensor has the following
symmetries:

i) R[(X, Y, Z,W ) = −R[(Y,X,Z,W )

ii) R[(X, Y, Z,W ) = −R[(X, Y,W,Z)

iii) R[(X, Y, Z,W ) = R[(Z,W,X, Y )
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iv) R[(X, Y, Z,W ) +R[(Y, Z,X,W ) +R[(Z,X, Y,W ) = 0

The last symmetry is called algebraic Bianchi identity.

The proof, that is more or less a series of simple steps in the right order, can be found
in [Lee97].

Corollary C.5.7.
For the coefficients of R[ the symmetries have the following form:

i) Rijk` = −Rjik`

ii) Rijk` = −Rij`k

iii) Rijk` = Rk`ij

iv) Rijk` +Rjki` +Rkij` = 0

Theorem C.5.8 (Differential Bianchi identity).
The covariant Riemann tensor satisfies the differential Bianchi identity:

(∇WR
[)(X, Y, Z, V ) + (∇ZR

[)(X, Y, V,W ) + (∇VR
[)(X, Y,W,Z) = 0 .

In coordinates this reads

Rijk`;m +Rij`m;k +Rijmk;` = 0 .

Proof C.5.9.
We include the proof, not because it is particularly helpful in understanding the
relation or where it comes from, but because it shows a standard technique of
Riemannian geometry.

To prove the claimed identity for a single (but not specified) point p, it is enough
to prove the identity for basis vectors (i.e. the coordinate version), because of the
multilinearity in all five vector fields. The main idea to simplify the calculations is,
that we are free to choose the coordinates (also because of multilinearity). Here,
a good choice would be coordinates, such that ∇∂i∂j|p = Γkij(p)∂k vanish. Indeed
such coordinates exist for all p, for example Riemannian normal coordinates do
(see theorem C.4.17). Also [∂i, ∂j] = 0 for all coordinates.

We begin by observing, with the help of theorem C.2.24, that the symmetries of
the covariant Riemann tensor may be used in the presence of a covariant derivative.
Thus the differential Bianchi identity is equivalent to

(∇WR
[)(Z, V,X, Y ) + (∇ZR

[)(V,W,X, Y ) + (∇VR
[)(W,Z,X, Y ) = 0 .

As we have argued, it is enough to show
(∇mR

[)(∂k, ∂`, ∂i, ∂j)|p + (∇kR
[)(∂`, ∂m, ∂i, ∂j)|p + (∇`R

[)(∂m, ∂k, ∂i, ∂j)|p = 0 .
With the metric compatibility of ∇, theorem C.2.24 and our special choice, such
that Γkij(p) = 0, we get:

(∇mR
[)(∂k, ∂`, ∂i, ∂j)|p = ∇mR

[(∂k, ∂`, ∂i, ∂j)|p = ∇mg(R(∂k, ∂`)∂i, ∂j)|p
= g(∇m∇k∇`∂i −∇m∇`∇k∂i, ∂j)|p .
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Although ∇m∂j has vanished, this does not happen to ∇m∇k∇`∂i in general,
similarly to zeros of first derivatives not necessarily being zeros of higher derivatives.

(∇mR
[)(∂k, ∂`, ∂i, ∂j)|p + (∇kR

[)(∂`, ∂m, ∂i, ∂j)|p + (∇`R
[)(∂m, ∂k, ∂i, ∂j)|p

= g(∇m∇k∇`∂i −∇m∇`∇k∂i +∇k∇`∇m∂i −∇k∇m∇`∂i

+∇`∇m∇k∂i −∇`∇k∇m∂i, ∂j)|p
= g(R(∂m, ∂k)∇`∂i +R(∂k, ∂`)∇m∂i +R(∂`, ∂m)∇k∂i, ∂j)|p . = 0

In the last line we used, that all covariant derivatives are of first order of and thus
vanish at p.

C.5.3. Ricci and scalar curvature

Tensors with 4 indices are rather complicated objects one wants to avoid when possible.
A way to do so, is to encode some of the information of R in tensors of lower rank,
which leads to the following definition:

Definition C.5.10.
The Ricci (curvature) tensor R and the scalar curvature S are defined as
contractions of the Riemann tensor:

R = tr14(R) and S = tr12(R) .

In coordinates this reads

Rij = R k
kij and S = R i

i = gijRij .

The scalar curvature depends on the Ricci tensor, we defined to be a contraction of the
Riemann tensor. One wants to have a well defined meaning of positive or negative scalar
curvature, yet there are different sign conventions for the Riemann tensor. This leads
to a different definition of the Ricci tensor, if one chooses a different sign convention
(changing index position for trace or an additional minus sign).

Corollary C.5.11.
The Ricci tensor is symmetric, i.e. Rij = Rji.

Proof C.5.12.
Rij = R k

kij = −Rk
jki = Rk

jik = R k
kji = Rji .

Lemma C.5.13 (Contracted Bicanchi identity).
The covariant derivative of the scalar curvature is twice the covariant divergence
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of the Ricci tensor:
R j
ij; = 1

2S;i .

Proof C.5.14.
We start from the differential Bianchi identity:

Rijk`;m +Rij`m;k +Rijmk;` = 0 .

Contracting with gi` (since gi`;• is zero) and using the symmetries results in:

0 = R i
ijk ;m −R i

ijm ;k +R i
ijmk; = Rjk;m −Rjm;k +R i

ijmk; .

Again, contracting with gjk gives

0 = R j
j ;m −R

j
jm; −R

j i
jim ; = S;m −R j

jm; −R i
im; ,

⇔ 1
2S;m = R j

jm; = R j
mj; .

Since we have emphasized the coordinate free approach, we want to state the last
lemma without relying on coordinates. To do so, we need to define the divergence of a
symmetric covariant tensor of rank 2:

divR := tr01(∇R) .

The zeroth index corresponds to the vector of the covariant derivative. Since R is
symmetric, we could have chosen tr02, as well. So there is no ambiguity. The contracted
Bianchi identity reads in the coordinate free version:

divR = 1
2∇S .

C.6. Killing fields

In classical physics and quantum mechanics, conserved quantities correspond to sym-
metries, by Noether’s theorem. In general relativity, conserved quantities can be
constructed from special vector fields, called Killing fields, that can be understood as
symmetries of the metric.

Definition C.6.1.
Let (M, g) be a (pseudo) Riemannian manifold. A vector field X ∈ Γ(TM) is
called Killing field, if LXg = 0 on M .

The condition to be a Killing field is a global condition and it is not clear, if non-trivial
Killing fields exists at all. In fact, one can construct Riemannian manifolds that do not
allow for non-trivial Killing fields.
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Lemma C.6.2.
A vector field X ∈ Γ(TM) is a Killing field, if and only if it satisfies the Killing
equation:

g(∇vX,w) + g(v,∇wX) = 0 ,
for all vector fields v, w, where ∇ is the Levi-Civita connection.

Proof C.6.3.
We begin with the Killing condition:

0 = (LXg)(v, w) = LXg(v, w)− g(LXv, w)− g(v,LXw)

Since LXg(v, w) = X(g(v, w)) = ∇Xg(v, w) it follows, that

∇Xg(v, w) = g(LXv, w) + g(v,LXw) .

On the other hand:

∇Xg(v, w) = −(∇Xg)(v, w) + g(∇Xv, w) + g(v,∇Xw) = g(∇Xv, w) + g(v,∇Xw) .

In the last step we used the compatibility with the metric ∇Xg ≡ 0 of the Levi-
Civita-connection. Combining the equations yields:

g(∇Xv, w) + g(v,∇Xw) = g(LXv, w) + g(v,LXw)

The Lie-derivative can be written with covariant derivatives (see lemma C.3.10),
hence

g(∇Xv, w) + g(v,∇Xw) = g(LXv, w) + g(v,LXw)
= g(∇Xv −∇vX,w) + g(v,∇Xw −∇wX)
= g(∇Xv, w) + g(v,∇Xw)− g(∇vX,w)− g(v,∇wX) ,

⇔ 0 = g(∇vX,w) + g(v,∇wX) .

Corollary C.6.4.
In coordinates, the Killing equations reads Xµ;ν +Xν;µ = 0.

Proof C.6.5.
Using the flat isomorphism, and noticing, that v and w are arbitrary, we can write:

0 = g(∇vX,w) + g(v,∇wX) = (∇vX)[(w) + (∇wX)[(v)
= vµ(∇∂µX)[(w) + wν(∇∂νX)[(v)
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= vµ(∇∂µX)νdxν(w) + wν(∇∂νX)µdxµ(v)
= vµwν(∇∂µX)ν + vµwν(∇∂νX)µ
= vµwν((∇∂µX)ν + (∇∂νX)µ) ≡ vµwν(Xν;µ +Xµ;ν) ,

⇔ 0 = Xµ;ν +Xν;µ .

The importance of Killing fields for general relativity comes from the following theorem:

Theorem C.6.6.
Let γ be a geodesic and ∇ a metric connection. If X is a Killing field, then
g(γ̇, X) = const. along the curve.

Proof C.6.7.
To show that g(γ̇, X) is constant along the curve it is enough to show that
∇γ̇g(γ̇, X) = 0. In the following, we use that ∇γ̇ γ̇ = 0 for geodesics and
g(∇vX, v) = −g(v,∇vX) = 0 for Killing fields, because of the Killing equation.
Using the metric compatibility:

∇γ̇g(γ̇, X) = g(∇γ̇ γ̇, X) + g(γ̇,∇γ̇X) = 0 .



D
Calculations in coordinates
Although it is the author’s opinion, that physical theories should be formulated coordinate free,
since physics does not depend on man-made coordinates, comparing experiment with theory
will end in coordinate dependent calculations. Also, historical, and partly also contemporary
literature prefer the coordinate approach. Hence, in this chapter, some useful calculational tools
are presented.

D.1. Determinant of the metric tensor

In many coordinate expressions in Riemannian geometry and general relativity one
encounters the determinant of the metric tensor. In the following we show some useful
calculations and mention mathematical subtleties.

D.1.1. Definition: metric determinant

Let Ap ∈ End(TpM) be an endomorphism for all p ∈ U ⊂ M and ω be an n-form on
M , where dim(M) = n. The determinant of Ap in p is defined by

ω(Apv1, . . . , Apvn) = det(Ap)ω(v1, . . . , vn) ∀v1, . . . , vn ∈ TpM .

With this definition one can see easily, that the determinant does not depend on the
choice of coordinates. Hence det(Ap) : U → R defines a function on U . Choosing
coordinates, such that Ap can be expressed as matrix Aµν(p), it can be shown that

det(Ap) =
∑
σ∈Σn

sgn(σ)
n∏
µ=1

Aµσ(µ)(p)
 .

Definition D.1.1.
Let (M, g) be a (pseudo) Riemannian manifold. For a chart (x, U) define the
metric determinant det(gµν) by

det(gµν) =
∑
σ∈Σn

sgn(σ)
n∏
µ=1

gµσ(µ)

 .

The formula for the metric determinant seems to be innocent enough. In contrast to the
determinant of endomorphisms, the metric determinant has no coordinate free definition.
In fact, the metric determinant depends on the choice of coordinates. The
reason is, that endomorphisms, for finite-dimensional vector spaces, are isomorphic to
(1,1)-tensors. The metric tensor is a (0,2) tensor.1. Hence, the metric determinant is

1One might attempt to use the flat or sharp isomorphisms to fix that. However, these isomorphisms
use the metric tensor, changing the determinant
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defined with respect to a chart. Also notice that the metric determinant defines no
function on the manifold!

D.1.2. Derivatives of the metric determinant

There is a very useful formula for derivatives involving determinants, called Jacobi’s
formula:

Theorem D.1.2 (Jacobi’s formula).
Let A(t) be an invertible matrix. Then the parameter derivative of the determinant
is given as follows:

d

dt
det(A(t)) = det(A(t))tr

(
A−1(t) d

dt
A(t)

)
.

We skip the proof, which can readily be found, and focus on its implications for the
metric determinant.

Lemma D.1.3.
The derivative the determinant with respect to one coefficient is:

d

dAµν
det(A) = det(A)(A−1)νµ .

Proof D.1.4.
Using Jacobi’s formula it remains to show that

(A−1)νµ = tr
(
A−1 d

dAµν
A

)
.

The matrix B = d
dAµν

A is a matrix with Bηρ = 0 for all ηρ 6= µν. The coefficient
Bµν is equal to 1. matrix multiplication shows, that all diagonal elements of
A−1 d

dAµν
A are zero but one, being equal to (A−1)νµ.

Jacobi’s formula and the last lemma allow to calculate some common derivatives of the
metric determinant.

Lemma D.1.5.
Let (M, g) be a (pseudo) Riemannian manifold. Then for all positions x, for
which det(gµν(x)) 6= 0 holds, the following derivatives of

√
| det(gµν)| apply:

i) d

dgµν

√
| det(gµν)| =

1
2
√
| det(gµν)|gµν ,

ii) d

dgµν

√
| det(gµν)| = −

1
2
√
| det(gµν)|gµν ,
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iii) ∂

∂xη

√
| det(gµν)| =

√
| det(gµν)|Γµµη .

Proof D.1.6.
By assumption we are at positions where the absolute value is a differentiable
function with derivative (for t 6= 0) d

dt
|t| = t

|t| = sign(t). Let 	 denote sign(det(gµν))
in the following:

d

dgµν

√
| det(gµν)| =

1
2
√
| det(gµν)|

d

dgµν
| det(gµν)|

= 	 1
2
√
| det(gµν)|

d

dgµν
det(gµν)

= 	 det(gµν)
2
√
| det(gµν)|

gνµ = | det(gµν)|
2
√
| det(gµν)|

gµν

= 1
2
√
| det(gµν)|gµν .

With det(gµν) = det(gµν)−1, since (gµν)−1 = (gµν) it follows that:
d

dgµν
det(gµν) = d

dgµν
1

det(gµν) = − 1
det(gµν)2

d

dgµν
det(gµν)

= − 1
det(gµν)gµν = − det(gµν)gµν .

With the first calculation we obtain:
d

dgµν

√
| det(gµν)| = −

1
2
√
| det(gµν)|gµν .

Before we can prove the last equation, we need to show how the trace of the partial
derivatives of the metric gµρgµρ,η relate to the Christoffel symbols:

2Γµµη = gµρ(gηρ,µ + gρµ,η − gµη,ρ) = g ρ
ηρ, − g µ

ηµ, + gµρgµρ,η = gµρgµρ,η .

With this , using Jacobi’s formula it follows, that:
∂

∂xη

√
| det(gµν)| =

1
2
√
| det(gµν)|

∂

∂xη
| det(gµν)| =

	 1
2
√
| det(gµν)|

∂

∂xη
det(gµν)

= 	 det(gµν)
2
√
| det(gµν)|

tr(gµνgνρ,η)

= | det(gµν)|
2
√
| det(gµν)|

gµνgµν,η

=
√
| det(gµν)|Γµµη .
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Corollary D.1.7.
In the last proof, we have seen, that:

gµνgµν,η = 2Γµµη .

D.2. Densities

There is much confusion about the meaning of densities in the physical and mathematical
literature, due to different usage of the term. Even worse, the proper meaning of
quantities like the current-density is a mathematical density not a physical density.

D.2.1. Mathematical Density (short review)

The necessity of densities arise in the context of integration over non-orientable manifolds.
In the case of oriented manifolds one naturally uses top-forms to integrate. There
are no problems, as long as one restricts oneself to oriented charts. However, since
there are two possible orientations, there are two different oriented atlases. Choosing a
chart with different orientation results in an additional minus sign in integration. This
inconvenience reveals, that top-forms are not the perfect integrands. Loosely speaking,
densities in mathematics are differential forms that account for orientation changes
with an additions sign change, such that integration remains invariant. In fact, densities
allow for integration on non-orientable manifolds. More formally, densities are sections
of ∧(T ∗M)⊗O(M), where O(M) is the orientation line bundle of M . In the orientable
case, densities and differential forms are related by a sign change, allowing to define
densities as equivalence classes.[Jän05]

D.2.2. Densities in Physics

The meaning of densities in the physical literature comes form the need to integrate
on manifolds, at a time when differential forms were not available. We can motivate
the definition with the integration of a top form/density over a manifold, similarly to
[Car97, chapter 2].
Given an n-form ω, the integration

∫
U ω for U ⊂ M is well defined. If U can be

covered with a single chart (Ux, x), then∫
U
ω =

∫
x(U)

ω
(x)
1,...,n dx

1 ∧ . . . ∧ dxn .

Here ω(x)
1,...,n dx

1 ∧ . . . ∧ dxn is the pulled back form (x−1)∗ω on Rn. Choosing a second
chart (Uy, y), that covers U , we obtain a different integration region y(U), but more
importantly for this motivation section, we obtain a different form on Rn:

(y−1)∗ω = ω
(y)
1,...,n dy

1 ∧ . . . ∧ dyn .

Denoting the Jacobi determinant det
(
∂xi

∂yi

)
with Jxy , we can write

dx1 ∧ . . . ∧ dxn = Jxy dy
1 ∧ . . . ∧ dyn .
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Hence the transformation for the coefficients is

ω
(y)
1,...,n = Jxyω

(x)
1,...,n .

If however ω were a density (in the mathematical sense), the transformation would read

ω
(y)
1,...,n = |Jxy |ω

(x)
1,...,n .

The space of top forms/densities is one dimensional, as is the space of functions, for
each p ∈M .2 In fact, the functions and top forms/densities are isomorphic on oriented
manifolds. However, functions transform different than the coefficients of top forms/
densities. Motivated by this, we define:

Definition D.2.1.
A tensor density T a...bc...d transforms as a tensor with an additional |Jxy |:

(
T (y)

)a...b
c...d

= |Jxy |
∂ya

∂xα
. . .

∂yb

∂xβ
∂xγ

∂yc
. . .

∂xδ

∂yd

(
T (x)

)α...β
γ...δ

.

A pseudo tensor density transforms as a tensor with an additional Jxy :

(
T (y)

)a...b
c...d

= Jxy
∂ya

∂xα
. . .

∂yb

∂xβ
∂xγ

∂yc
. . .

∂xδ

∂yd

(
T (x)

)α...β
γ...δ

.

In the same way a (pseudo) tensor density of weight w transforms as a tensor
with an additional |Jxy |w and ((Jxy )w for pseudo densities).3

One can see, that tensor densities are related to mathematical densities. But be aware,
that an antisymmetric tensor density is no mathematical density.

Remark D.2.2.
To avoid confusion, we use the term density on its own only to describe math-
ematical densities. Otherwise we write physical density, with the exception of
(pseudo) tensor density.

D.2.3. Metric determinant and densities

We stated above, that the metric determinant is no proper function on a manifold. In
fact it is a scalar density. To see that, we begin with the transformation behavior of
the metric tensor coefficients:

g
(y)
ab = ∂xα

∂ya
∂xβ

∂yb
g

(x)
αβ .

2Of course over M it becomes infinite dimensional.
3In the literature pseudo tensor densities of weight w transform with sign(Jxy )|Jxy |w. However, from
our motivation (Jxy )w is the more natural extension.
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Taking the metric determinant and observing that the contraction can be understand
as matrix multiplication in this context, we find:

det(g(y)
ab ) = det

(
∂xα

∂ya

)
det

(
∂xβ

∂yb

)
det(g(x)

αβ ) = (Jxy )2 det(g(x)
αβ ) .

Finally we see that
√
| det(gµν)| is a scalar density:

√
| det(g(y)

µν )| = |Jxy |
√
| det(g(x)

µν )| .

For the remainder we use the convention, that |g| = | det(g(x)
µν )|, since |g| has no further

meanings here anyway. Thus:

√
|g(y)| = |Jxy |

√
|g(x)| .

Constructing tensor fields by components, we immediately find:

Theorem D.2.3.
Let T a...bc...d be a tensor field, then Ta...bc...d =

√
|g|

w
T a...bc...d is a tensor density of

weight w. Conversely, if Ta...bc...d is a tensor density of weight w, then T a...bc...d =
1√
|g|
wTa...bc...d is a regular tensor field.

There is a very useful relation between the metric determinant and covariant derivatives,
stated in the following lemma:

Lemma D.2.4.
Let V µ be a tensor field, then the covariant divergence can be calculated as
follows:

V µ
;µ = 1√

|g|

(√
|g|V µ

)
,µ
.

Proof D.2.5.
Beginning from the right side, using lemma D.1.5, we calculate

(√
|g|V µ

)
,µ

= (∂µ
√
|g|)V µ +

√
|g|∂µV µ =

√
|g|(ΓηηµV µ + V µ

,µ )

=
√
|g|V µ

;µ .

The last Lemma can extended to higher rank tensors, if interpreted right, to find
covariant Euler-Lagrange-equations, according to [HE75, section 3.3]:
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Corollary D.2.6.
Understanding T a...µ...bc...d = V µ as the coefficients of a vector, we can write

∇∂µT
a...µ...b

c...d = 1√
|g|
∂µ

(√
|g|T a...µ...bc...d

)
,

using a slightly different notation than before, to make visible that we do not take
the covariant derivative over the full tensor. Form gab;µ = 0 we see that we can
also write

∇∂µT
a...b

c...µ...d = 1√
|g|
∂µ

(√
|g|T a...bc...µ...d

)
.

The preceding corollary can become rather confusing, if it is not mentioned explicitly
how to understand the covariant derivative there.

Theorem D.2.7.
Let L(φIJ , φIJ ;µ, x) be a Lagrange density. Then the first variation δS[φ, ψ] of the
functional S[φ] =

∫
U L(φIJ , φIJ ;µ, x)

√
|g|dnx vanishes for all ψ ≡ 0 on ∂U , if and

only if the covariant Euler-Lagrange-equations are satisfied:

∂L(φIJ , φIJ ;µ, x)
∂φIJ

−∇µ

∂L(φIJ , φIJ ;µ, x)
∂φIJ ;µ

= 0 .

Proof D.2.8.
The proof of theorem B.2.1 carries over due to the last corollary. For the adaptions
necessary we observe, that:

∂L(φIJ , φIJ ;µ, x)
∂φIJ ;µ

ψIJ ;µ = ∇µ

(
∂L(φIJ , φIJ ;µ, x)

∂φIJ ;µ
ψIJ

)
−
(
∇µ

∂L(φIJ , φIJ ;µ, x)
∂φIJ ;µ

)
ψIJ .

Also, to use the same argument (Stokes theorem) as before, we write
∫
U
∇µ

(
∂L(φIJ , φIJ ;µ, x)

∂φIJ ;µ
ψIJ

)
dnx =

∫
U

1√
|g|
∂µ

(√
|g|
∂L(φIJ , φIJ ;µ, x)

∂φIJ ;µ
ψIJ

)
dnx .



E
Vector valued differential forms

Differential forms have been used throughout this document without introduction. Since they
are a well covered topic in mathematics, we refer to the literature for a thorough introduction.
However, to alleviate the lack of introduction, we will cover Vector valued differential forms more
detailed than usually done. Part of the reason for the mostly concise introductions is, that many
definitions and theorems carry over without changes. This chapter is mostly based on [Bau14],
[Mor01] and [RS18].

E.1. Natural bundle operations

Without proof here, some operations on vector bundles need to be introduced. For that
reason, we recall the definition of transition functions (see page 60), and quote a vector
bundle construction lemma:

Lemma E.1.1 ([Lee97, lemma 2.2]).
Let M be a smooth manifold, E a set and π : E → M a surjective map. Let
{Uα, ϕα} be an open cover of M with maps ϕ : π−1(Uα)→ Uα × Rn that satisfy
π1 ◦ ϕα = π, where π1 is the projection on the first component. If ϕα ◦ ϕ−1

β define
maps

ϕα ◦ ϕ−1
β : (Uα ∩ Uβ)× Rk −→ (Uα ∩ Uβ)× Rk , (p, v) 7−→ (p, fαβ(p)v) .

such that fαβ : Uα ∩ Uβ → GL(Rk) , then (E,M, π) is a vector bundle with local
trivializations {ϕα}.

This lemma proves, that the tensor bundles we introduced in subsection C.2.1 are
indeed vector bundles. Here, we use it to define some important vector bundles, two of
which we are already familiar with, following [Bau14, section 2.4]:

The dual bundle

Let (E,M, π) be a vector bundle with local trivializations {Uα, ϕα} and define

E∗ :=
⋃
p∈M

E∗p ,

where E∗p is the dual vector space of the fiber Ep = π−1({p}). Define further π∗ : ϕp ∈
E∗p → p ∈M . Then (E∗,M, π∗) is a vector bundle, called dual bundle, together with
the maps

ϕ∗α : Uα −→ Uα × (Rn)∗ , ϑp ∈ E∗p 7−→ (p, ϑp ◦ ϕ−1
β ) ,

for all β, such that p ∈ Uβ.
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The tensor bundle

Let (E,M, π) and (Ẽ,M, π̃) be two vector bundles with local trivializations {Uα, ϕα}
and {Ũα, ϕ̃α}. The tensor bundle (E ⊗ Ẽ,M, π⊗) is defined by

E ⊗ Ẽ :=
⋃
p∈M

Ep ⊗ Ẽp , π⊗ : (vp, wp) ∈ Ep ⊗ Ẽp → p ∈M ,

ϕα(vp, wp) = (p, ϕ′α(vp)⊗ ϕ̃α′(wp)) ,

where ϕ′α denotes π2 ◦ ϕα with π2 : U × Rn → Rn and ϕ̃α′ respectively.

The Whitney bundle

Let (E,M, π) and (Ẽ,M, π̃) be as before. The Whitney bundle (E ⊕ Ẽ,M, π⊕) is
defined by

E ⊕ Ẽ :=
⋃
p∈M

Ep ⊕ Ẽp , π⊕ : (vp, wp) ∈ Ep ⊕ Ẽp → p ∈M ,

ϕα(vp, wp) = (p, ϕ′α(vp)⊕ ϕ̃α′(wp)) .

The Homomorphism bundle

Let (E,M, π) and (Ẽ,M, π̃) be as before. The Homomorphism bundle is defined by

Hom(E, Ẽ) :=
⋃
p∈M

Hom(Ep, Ẽp) , πH : Lp ∈ Hom(Ep, Ẽp)→ p ∈M ,

ϕα(Lp) = (p, ϕ̃α ◦ Lp ◦ ϕ−1
α ) .

The Pullback bundle

Let (E,M, π) be a vector bundle and ψ : N → M a diffeomorphism. The pullback
bundle (ψ∗E,N, π) is a vector bundle defined by

ψ∗N := {(p, v) ∈ N × E | f(p) = π(v)} and π(p, v) := p .

Let {Uα, ϕα} be local trivializations, then {ψ(Uα), φα} with

φα(p, v) = (p, ϕ′α(v))

are local trivializations of (ψ∗E,N, π).

Definition E.1.2.
We keep the notation introduced in this section for the rest of this chapter, that
is:

ϕα = (π, ϕ′α) ⇒ ϕα(ωp) = (p, ϕ′α(ωp)) .
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E.2. Definition of vector bundle valued differential
forms

Usual differential k-forms are sections of (∧k(T ∗M),M, π), i.e
ω ∈ Γ

(∧k(T ∗M)
)
. That means:

ωp : TpM × . . .× TpM︸ ︷︷ ︸
k-times

−→ R

is an alternating multilinear map, that varies smoothly in p ∈M . Vector bundle valued
k-forms are alternating linear maps into the fibers Ep of an vector bundle (E,M, π):

Ωp : TpM × . . .× TpM︸ ︷︷ ︸
k-times

−→ Ep .

Recalling the isomorphy of tensor spaces and the space of linear maps (see lemma
A.1.11) in the case of finite dimensional vector spaces, this means:

Ωp ∈ Ep ⊗
(∧k(TpM)

)∗
∼= Ep ⊗

∧k(T ∗pM) ∼=
∧k(T ∗pM)⊗ Ep .

Using the fiber wise construction of the tensor bundle, we obtain the formal definition
of vector bundle valued differential forms:

Definition E.2.1.
A vector bundle valued differential k-form with values in the vector bundle
(E,M, π) is a smooth section of the vector bundle (∧k(T ∗M)⊗ E,M, πk). The
vector space of these vector valued k-forms is denoted by Ωk(M,E).

Remark E.2.2.
For short, we will call vector bundle valued differential k-form simply vector
k-form.

Indeed, this definition is a straightforward generalization of k-forms, since ∧k(T ∗pM)⊗R

R ∼=
∧k(T ∗pM) and thus

Ωk(M) = Γ
(∧k(TM),M

)
∼= Γ

(∧k(TM)⊗ R,M
)
.

Lemma E.2.3.
Let ⊗̂ denote a tensor product linear in C∞(M)-functions, i.e. ⊗̂ = ⊗C∞(M), then
for every η ∈ Ωk(M) and v ∈ Γ(E,M) it holds that η⊗̂v ∈ Ωk(M,E), with the
definition:

(η⊗̂v)p := ηp ⊗ vp .
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Proof E.2.4.
First, we notice that ηp ⊗ vp is well defined by the construction of tensor bundles.
Also, ηp ⊗ vp defines an alternating multilinear map

ηp ⊗ vp : TpM × . . .× TpM︸ ︷︷ ︸
k-times

−→ Ep ,

by setting
(ηp ⊗ vp)(X1, . . . , Xk) = ηp(X1, . . . , Xk) · vp ∈ Ep .

Hence (η⊗̂v)p is such an alternating multilinear map. We need to show, that
(η⊗̂v)p is smooth in p.

This can be done as follows: Let (Uα, φα) be a local trivialization of (∧k(T ∗M)⊗
E,M, πk) as defined for tensor bundles:

φα : π−1
k (Uα) −→ Uα ×

(∧k(Rn)⊗ Rm
)
.

Let ϕα(ηp) = (p, η(p)) and ϕ̃α(vp) = (p, v(p)). Then, by definition, η(p) is a
smooth vector field Uα →

∧k(Rn), v(p) is a smooth vector field Uα → Rm, and
also η(p)⊗ v(p) is a smooth vector field on ∧k(Rn)⊗ Rm. Hence,

φ−1
α (p, η(p)⊗ v(p)) =: ρ

defines an element ρ ∈ Ωk(M,E), i.e. a smooth section. But for all p ∈ Uα we
have:

φα(ρp) = (p, η(p)⊗ v(p)) = φα(ηp ⊗ vp) = φα((η⊗̂v)p) .

Thus η⊗̂v is smooth on Uα and by repetition with different Uβ on the whole of M .
To be well defined, we finally need to show, that the linearity over C∞(M) leads

to no contradictions. This can be done fiber-wise:(
(f · η)⊗̂v

)
p

= f(p) · ηp ⊗ vp = ηp ⊗ f(p)vp =
(
η⊗̂f · v

)
p
.

As a corollary of the last proof, we also have

Corollary E.2.5.
Let (Uα, φα) be a local trivialization of (∧k(T ∗M)⊗ E,M, πk). On Uα any vector
k-form ω ∈ Ωk(M,E) can be written as

ω = ω β
α ηα ⊗C∞(Uα) vβ ,

with local frames {ηα} of (∧k(T ∗M),M, π) and {eβ} of (E,M, π).

In fact, some sources1 state that even Ωk(M,E) ' Ωk(M)⊕C∞(M) Γ(E) holds.
1For example [Wik18], which refers to a forum, that itself refers to the book “Differentiable Manifolds”
from Lawrence Colon.



E.3. Operations on vector forms 103

Remark E.2.6.
As we have done throughout the whole document, we will drop the special notation
and simply write ⊗ for ⊗̂ and ⊗C∞(Uα) etc., yet being aware of its special meaning
on bundles.

To avoid misunderstandings in the next section, we mention the natural meaning of
ω ∈ Ωk(M,E) as map:

ω : Γ(TM,M)× . . .× Γ(TM,M) −→ Γ(E,M) ,

that is alternating and multilinear over C∞(M).

E.3. Operations on vector forms

Definition E.3.1.
Let Q : E1 ⊕ E2 → E3 be a fibre wise non-degenerate bilinear map of vector
bundles (Ei,M, πi) that is smooth, then the wedge product ∧Q : Ωk(M,E1)×
Ω`(M,E2)→ Ωk+`(M,E3) is defined by

(ω ∧Q η)(X1, . . . , Xk+`) = 1
k!`!

∑
σ∈Σk+`

sgn(σ)Q
(
ω(Xσ(1), . . . , Xσ(k));

η(Xσ(k+1), . . . , Xσ(k+`))
)
,

for tangent vector fields X1, . . . , Xk+`.

It should be mentioned, that different normalization coefficients than 1
k!`! are used by

some authors in some situations. In the case of usual differential forms, the natural
choice of a bilinear map is the field multiplication · : R⊕ R→ R.

Definition and corollary E.3.2.
Differential k-forms operate on vector `-forms by the wedge product ∧ : Ωk(M)×
Ω`(M,E) → Ωk+`(M,E). The natural bilinear map is the product, fiber wise
defined by · : R× Ep → Ep.

Proof E.3.3.
From∧k(TM) ∼=

∧k(TM)⊗ R and
∧k(TM)⊗ E ∼=

∧k(TM)⊗ E ⊗ R ,

the statement is immediate.

In the following, we will introduce operators, known from usual differential forms, that
carry over without any changes in the definitions. We will also see, that they keep their
behavior.
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Definition E.3.4.
Let ω ∈ Ωk(M,E1) and η ∈ Ωk(N,E2) be vector forms, Xi ∈ Γ(TN,N) vector
fields and ψ : N →M a diffeomorphism.

• The pulled back vector form ψ∗ω ∈ Ωk(N,ψ∗E1) is defined by

(ψ∗ω)p(X1, . . . , Xk)p := ωψ(p)(Dpψ(X1), . . . , Dpψ(Xk)) .

• The interior product of X0 with η is defined by:

X0y : Ωk(N,E2) −→ Ωk−1(N,E2) ,

(X0yη)(X1, . . . , Xk−1) = η(X0, X1, . . . , Xk−1) .

Lemma E.3.5.
Let ω ∈ Ωk(M,E) and η ∈ Ω`(M,E) be vector forms, X ∈ Γ(TM,M) be a vector
field and ψ : M → N a diffeomorphism, then:

i) The wedge product ∧Q is bilinear.

ii) If Q is symmetric: ω ∧Q η = (−1)k`η ∧Q ω.

iii) ψ∗ is a linear map Ωk(M,E)→ Ωk(ψ∗E,N).

iv) ψ∗(ω ∧Q η) = ψ∗ω ∧ψ∗Q ψ∗η.

v) Xy is a linear operator.

vi) Xy(ω ∧Q η) = (Xyω) ∧Q η + (−1)kω ∧Q Xyη.

Proof E.3.6.
i) This is immediate form the bilinearity of Q.

ii) For the notation, let X̂ denote the omission of X, and assume `+ 1 = k + j:

(ω ∧Q η)(X1, . . . , Xk+`) = (−1)`(ω ∧Q η)(Xk+j, X1, . . . , X̂k+j, . . . , Xk+`)
= (−1)k`(ω ∧Q η)(Xk+j, . . . , Xk+`, X1, . . . , X`)

= (−1)k` 1
k!`!

∑
σ∈Σk+`

sgn(σ)Q
(
ω(Xσ(k+j), . . . , Xσ(k+`)) ;

η(Xσ(1), . . . , Xσ(`))
)

= (−1)k` 1
k!`!

∑
σ∈Σk+`

sgn(σ)Q
(
η(Xσ(1), . . . , Xσ(`)) ;

ω(Xσ(k+j), . . . , Xσ(k+`))
)

= (−1)k`(η ∧Q ω)(X1, . . . , Xk+`) .

iii) This follows from the fact, that the fibers Ep are vector spaces.
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iv) Plugging in the definition for both sides shows the equality.

v) Immediate from definitions.

vi) To simplify the proof, we notice that

(ω ∧Q η)(X1, . . . , Xk+`) = 1
k!`!

∑
σ∈Σk+`

sgn(σ)Q
(
ω(Xσ(1), . . . , Xσ(k)) ;

η(Xσ(k+1), . . . , Xσ(k+`))
)

=
∑

σ∈
∧
k+`

sgn(σ)Q
(
ω(Xσ(1), . . . , Xσ(k));

η(Xσ(k+1), . . . , Xσ(k+`))
)

Where σ ∈ ∧k+` means σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(k + `).
This can be done, since any transposition creates a minus sign in sgn(σ) as
well as in ω or η. Thus there are k! equal terms in ω and `! equal terms
in η in the set of full permutations, explaining the normalization 1

k!`! . The
set of permutation σ ∈ ∧

k+` consist of those that satisfy σ(1) = 1 and
those that satisfy σ(k + 1) = 1. This covers all allowed permutations, since
σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(k + `).

(ω ∧Q η)(X1, . . . , Xk+`) =
=

∑
σ∈
∧
k+`,σ(1)=1

sgn(σ)Q
(
ω(Xσ(1), . . . , Xσ(k)); η(Xσ(k+1), . . . , Xσ(k+`))

)
+

∑
σ∈
∧
k+`,σ(k+1)=1

sgn(σ)Q
(
ω(Xσ(1), . . . , Xσ(k)); η(Xσ(k+1), . . . , Xσ(k+`))

)

Let τ be a permutation in ∧k−1+`, that acts on {2, . . . , k + `}. Then, in the
first term sgn(τ) = sgn(σ) if τ(i) = σ(i) for i ∈ {2, . . . , k + `}. For the second
term, we use the permutation

ρ =
(

1 2 . . . k k + 1 . . .
2 3 . . . k + 1 1 . . .

)
≡ (1 2 . . . k + 1) ,

which has a signum2of (−1)(k + 1)− 1 = (−1)k. It follows that

(ω ∧Q η)(X1, . . . , Xk+`) =
=

∑
τ∈
∧
k−1+`

sgn(σ)Q
(
ω(X1, . . . , Xτ(k)); η(Xτ(k+1), . . . , Xτ(k+`))

)
+

∑
τ∈
∧
k−1+`

sgn(τ ◦ ρ)Q
(
ω(Xτ(ρ(1)), . . . , Xτ(ρ(k))); η(Xτ(ρ(k+1)), . . . , Xτ(ρ(k+`)))

)
=

∑
τ∈
∧
k−1+`

sgn(σ)Q
(
[X1yω](Xτ(2), . . . , Xτ(k)); η(Xτ(k+1), . . . , Xτ(k+`))

)
+ (−1)k

∑
τ∈
∧
k−1+`

sgn(τ)Q
(
ω(Xτ(2), . . . , Xτ(k+1)); [X1yη](Xτ(k+2), . . . , Xτ(k+`))

)
= ([X1yω] ∧Q η + (−1)kω ∧Q [X1yη])(X2, . . . , Xk+`) .
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Corollary E.3.7.
Let ω ∈ Ωk(M,E) and ω ∈ Ω`(M,E) be vector forms with local frame representa-
tion ω = ω β

α ηα⊗ eβ and ρ = ρ δ
γ ξ

γ ⊗ fδ. Then, the wedge product and the interior
product have the following form:

ω ∧Q ρ = ω β
α ρ δ

γ

(
ηα ∧ ξδ

)
⊗Q(eβ, fδ) ,

Xy
(
ω β
α ηα ⊗ eβ

)
= ω β

α (Xyηα)⊗ eβ .

Proof E.3.8.
Inserting the definitions of the operators, together with the last lemma proves the
claims.

E.4. Connections and exterior derivative

We recall the definition of a connection on an arbitrary vector bundle (definition C.2.9).
Such a connection ∇ : Γ(TM,M)× Γ(E,M)→ Γ(E,M) can be understood as a map
d∇ : Γ(E,M)→ Ω1(M,E) by setting

d∇X ≡ ω := ∇•X (d∇X)(v) = ∇vX .

Indeed, vector 1-forms are C∞(M)-linear, agreeing with the definition of Connections.
Noticing, that Γ(E,M) has the meaning of E-valued functions, i.e.

Γ(E,M) ∼= Γ(R⊗ E,M) = Γ
(∧0(T ∗M)⊗ E,M

)
= Ω0(M,E) ,

we may restate the definition of connections in the language of vector forms.

Definition E.4.1.
A connection on a vector bundle (E,M, π) is a linear map

d∇ : Ω0(M,E) −→ Ω1(M,E)

that satisfies the product rule:

d∇(f ·X) = f · d∇X + df ⊗X .

Proof E.4.2.
Indeed, the product rule is the same as in definition C.2.9. Let v ∈ Γ(TM,M),

2Let ` be the length of a cycle, then the cycle has the signum (−1)`−1.
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then, with df(v) = v(f):

d∇(fX)(v) = fd∇X(v) + (df ⊗X)(v) = f∇vX + v(f)X = ∇v(fX) .

Corollary E.4.3.
To every connection d∇ : Ω0(M,E) −→ Ω1(M,E) belongs a unique
∇ : Γ(TM,M)× Γ(E,M)→ Γ(E,M) and vice versa, by the definition

d∇X ≡ ∇•X (d∇X)(v) = ∇vX .

For d∇ it is the same as for ∇. There are many possible connections in general. Hence
the operator d∇ is not uniquely determined a priory. However, one can fix a unique
choice, e.g. the Levi-Civita connection on a Riemannian manifold.

Example E.4.4.
The usual Cartan-derivative d : Ω0(M) → Ω1(M) is a connection on the trivial
bundle M ⊗ R.

Before defining the exterior covariant derivatives, that belong to a connection, we recall
the invariant definition of the k-th order exterior derivative:(

dkω
)

(X0, X1, . . . , Xk) :=
k∑
i=0

(−1)iXi

(
ω(X0, . . . , X̂i, . . . , Xk)

)
+

∑
0≤i<j≤k

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk) .

For the case of d : Ω0(M)→ Ω1(M) the exterior derivative is defined by df(v) = v(f),
which allows to write(

dkω
)

(X0, X1, . . . , Xk) :=
k∑
i=0

(−1)id
(
ω(X0, . . . , X̂i, . . . , Xk)

)
(Xi)

+
∑

0≤i<j≤k
(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk) .

Definition E.4.5 (See [KM13, section 11.13]).
Let d∇ be a connection. The exterior covariant derivative of order k is a
map

dk∇ : Ωk(M,E) −→ Ωk+1(M,E) ,
defined by
(
dk∇ω

)
(X0, X1, . . . , Xk) :=

k∑
i=0

(−1)id∇
(
ω(X0, . . . , X̂i, . . . , Xk)

)
(Xi)

+
∑

0≤i<j≤k
(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk) .

It is common practice, to drop the index k, simply writing d∇.
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Theorem E.4.6 (See [KM13, section 11.13]).
The exterior covariant derivative has the following properties:

i) For a decomposition ω = η⊗v it holds, that: d∇(η⊗v) = dη⊗v+(−1)deg ηη∧
d∇v.

ii) For ω ∈ Ωk(M), η ∈ Ω`(M,E) it holds, that: d∇(ω ∧ η) = (dω) ∧ η +
(−1)kω ∧ d∇η.

Proof E.4.7.

i) Writing out the definition of d∇ for ω = η ⊗ v and using the product rule for
d∇ : Ω0(M,E)→ Ω1(M,E) yields:

(d∇(η ⊗ v))(X0, . . . , Xk) =

=
k∑
i=0

(−1)id∇
(
η(X0, . . . , X̂i, . . . , Xk) · v

)
(Xi)

+
∑

0≤i<j≤k
(−1)i+jη([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk) · v

=
k∑
i=0

(−1)id
(
η(X0, . . . , X̂i, . . . , Xk)

)
(Xi) · v + η(X0, . . . , X̂i, . . . , Xk) · (d∇v)(Xi)

+
∑

0≤i<j≤k
(−1)i+jη([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk) · v

= (dη ⊗ v)(X0, . . . , Xk) +
k∑
i=0

(−1)iη(X0, . . . , X̂i, . . . , Xk) · (d∇v)(Xi) .

To see, that the last term is exactly, what the theorem claims, we start from
the other side, using the reasoning of proof E.3.6:

(η ∧ d∇v)(X0, . . . , Xk) =
∑

σ∈
∧
k,1

sgn(σ)η(Xσ(0), . . . , Xσ(k−1)) · (d∇v)(Xσ(k))

With the condition σ(0) < . . . < σ(k − 1), we see that

∑
σ∈
∧
k,1

sgn(σ)η(Xσ(0), . . . , Xσ(k−1)) · (d∇v)(Xσ(k))

= (−1)deg η
k∑
i=0

(−1)iη(X0, . . . , X̂i, . . . , Xk) · (d∇v)(Xi) ,

which proves the claim.

ii) Choosing local frames {ξα}, {eα} and using corollary E.3.7, together with the
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last claim yields:

d∇(ω ∧ η) = d∇
(
η β
α (ω ∧ ξα)⊗ eβ

)
= d

(
ω ∧ η β

α ξα
)
⊗ eβ

+ (−1)k+`
(
ω ∧ η β

α ξα
)
∧ d∇eβ

= dω ∧ η β
α ξα ⊗ eβ + (−1)kω ∧ d

(
η β
α ξα

)
⊗ eβ

+ (−1)k+`
(
ω ∧ η β

α ξα
)
∧ d∇eβ

= dω ∧ η + (−1)kω ∧
(
d
(
η β
α ξα

)
⊗ eβ + (−1)`η β

α ξα ∧ d∇eβ
)

= dω ∧ η + (−1)kω ∧ d∇η .

The theory of vector forms allows us to reinterpret the meaning of curvature. Recalling
definition C.5.1, a curvature endomorphism w.r.t a connection ∇ on an arbitrary vector
bundle is a map R : Γ(E,M)× Γ(E,M)× Γ(E,M)→ Γ(E,M), defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z = [∇X ,∇Y ]Z −∇[X,Y ]Z .

We observe, that for fixed X and Y , R(X, Y ) defines an endomorphism End(E) ≡
Hom(E,E). Also, it is easy to check, that R(X, Y ) is multilinear and alternating in X
and Y . This is reason to define the following:

Definition E.4.8.
The curvature form F∇ ∈ Ω2(M,End(E)) with respect to a connection ∇ is
defined by

F∇(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] .

Theorem E.4.9.
Let (E,M, π) be a vector bundle and ∇ a connection, the it holds that:

((d∇ ◦ d∇)Z) (X, Y ) = F∇(X, Y )Z ∀ X, Y, Z ∈ Γ(E,M) .

Proof E.4.10.
With d∇Z = ∇•Z and the definition of d1

∇ we see that:

(d∇(d∇Z))(X, Y ) = d∇(d∇Z(Y ))(X)− d∇(d∇Z(X))(Y )− d∇Z([X, Y ])
= d∇(∇YZ)(X)− d∇(∇XZ)(Y )−∇[X,Y ]Z

= ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

= F∇(X, Y )Z .
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Example E.4.11.
The trivial bundle M ⊕R is flat with respect to the naturally induced connection
of the exterior derivative, i.e. d ◦ d = 0.

E.5. Connection- and curvature forms

This section follows [Mor01, section 5.3 (c)] and is inspired by [RS18, sections 8.1 and
8.2] and [Wik18].

Lemma E.5.1.
Let (E,M, π) be a vector bundle with local trivializations {Uα, ϕα}. Let {eβ}
be a local frame on Uα. For every connection ∇ there are differential forms
ωij ∈ Ω1(Uα), called connection differential forms for the frame {eβ}
such that

d∇ej = ωij ⊗ ei .

Remark E.5.2.
So far, objects like ωij have been functions. Here however, ωij are proper differential
1-forms. To highlight that, we do not use the tensor notation of indented indices.
But still, we keep the summation convention. It should also be mentioned, that
the differential forms depend on the choice of local trivialization and the choice of
the local frame.

Proof E.5.3.
Let X ∈ Γ(E,M) be arbitrary. Since a connection ∇X defines a fiber wise linear
map, we can write

∇Xej =
∑
i

f ij(X) · ei ,

where f ij(X) ∈ C∞(U) are functions. To be connection however, for g · X the
objects f ij have to be C∞(U)-linear, i.e. f ij(g ·X) = g · f ij(X). Thus f ij are linear
maps Γ(E|U , U) and hence local differential 1-forms. Renaming f ij = ωij and
calculating

(d∇ej)(X) = ∇Xej =
∑
i

ωij(X) · ei = (ωij ⊗ ei)(X) ,

proves the claim.

The connection forms do not satisfy the product rule. Hence, they are not enough to
represent the connection. The next lemma shows, that symbolically ∇ = d+ ωij holds,
where it is understood, that d does not act on the frame.



E.5. Connection- and curvature forms 111

Lemma E.5.4.
On Uα, for the frame {eβ} it holds that:

d∇(f jej) = df j ⊗ ej + f jωij ⊗ ei .

Proof E.5.5.
Using theorem E.4.6 and the linearity of d∇, it follows that:

d∇(f jej) = df j ⊗ ej + f jd∇ej = df j ⊗ ej + f jωij ⊗ ei .

The connection forms ωij can be understood as components of an endomorphism valued
differential form ωα ∈ Ω1(Uα,End(Rn)). This can be realized with the isomorphy of
End(Rn) = Rn ⊗ (Rn)∗. Let {ϑβ} be the dual frame of {eβ}, then on Uα, the form ωα
can be written as:

ωα = ωij ⊗
(
ei ⊗ ϑj

)
∈ Ω1(Uα,End(Rn)) .

To avoid confusion between the tensor products, we define

End(Rn) 3 Lji = ei ⊗ ϑj  ωα = ωij ⊗ L
j
i .

Going on with the definitions, we set d = d⊗ IdEnd(Rn), we find the following corollary:

Corollary E.5.6.
Locally, i.e. on every local trivialization set Uα for every local frame {eβ}, a
connection d∇ can be written as

d∇ = d + ωα .

Proof E.5.7.
With

ωαej = ωi` ⊗
(
ei ⊗ ϑ`

)
(ej) = δ`j · ωi` ⊗ ei = ωij ⊗ ei ,

the claim follows directly form the calculation in proof E.5.5.

Remark E.5.8.
In the following, we may identify d with d, understanding how d acts on vector
valued forms by d and thus is well defined.

Definition E.5.9.
The curvature differential forms F i

j ∈ Ω2(Uα) of the curvature vector form
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F∇ on the local trivialization Uα for the local frame {eβ} are differential 2-forms
defined by

F∇(X, Y )ej = F i
j (X, Y )ei .

That F i
j are proper 2-forms can be proven similarly as in proof E.5.3, using the

properties of the curvature form F∇. Since F∇ ∈ Ω2(M,End(E)) already, we know,
that F∇α ∈ Ω2(Uα,End(Rn)) exists on the local trivialization. It remains to connect F∇α
to the forms F i

j . On the local trivialization set Uα, for the local frame {eβ} with dual
frame {ϑβ}, we can write:

F∇α = F i
j ⊗ L

j
i , where Lji = ei ⊗ ϑj .

The choice of F i
j together with Lji leads to:

F∇α ej = F i
` ⊗ L`iej = δj`F

i
` ⊗ ei = F i

j ⊗ ej ⇒ F∇α (X, Y )ej = F i
j (X, Y )ei .

Thus, F i
j are indeed the coefficients of the curvature form F∇α on the local trivialization,

for the local frame {eβ}. This result can also be taken as proof for the F i
j being proper

differential 2-forms.

Theorem E.5.10.
The curvature differential forms are related to the connection differential forms
by the structure equation:

dωij = −ωik ∧ ωkj + F i
j .

Proof E.5.11.
With the invariant definition of the exterior derivative, we calculate:

dωij(X, Y ) = X(ωij(Y ))− Y (ωij(X))− ωij([X, Y ]) .

By definition we have:

ωik ∧ ωkj (X, Y ) = ωik(X)ωkj (Y )− ωik(Y )ωkj (X) .

Last, a direct calculation, using ∇Xej = ωij(X)ei etc., shows that

F i
j (X, Y )ei = F∇(X, Y )ej =

(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
ej

=
(
X(ωij(Y )) + ωik(X)ωkj (Y )− Y (ωij(X))

−ωik(Y )ωkj (X)− ωij([X, Y ])
)
ei

=
(
dωij(X, Y ) + ωik ∧ ωkj (X, Y )

)
ei .

That is: dωij(X, Y ) + ωik ∧ ωkj (X, Y ) = F i
j (X, Y ), which proves the claim.
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Theorem E.5.12.
Let (Uα, ϕα) be a local trivialization. For the endomorphism valued forms on the
local trivialization, structure equation takes the form

F∇α = dωα + ω ∧◦ ω .

The wedge product ∧◦ is defined w.r.t. the natural composition ◦ : End(Rn) ⊕
End(Rn)→ End(Rn) of endomorphisms.

Proof E.5.13.
Choosing a local frame {eβ} together with dual frame {ϑβ} on Uα, allows to write
F∇α = F i

j ⊗ L
j
i and ωα = ωij ⊗ L

j
i . As remarked above, we understand d to be d,

i.e. dωα = (dωij)⊗ L
j
i . With Q(Lki , L

j
`) = Lki ◦ L

j
` = δk`L

j
i and corollary E.3.7 (in a

slightly more general form) we find:

ωα ∧◦ ωα = (ωik ⊗ Lki ) ∧◦ (ω`j ⊗ L
j
`) = ωik ∧ ω`j ⊗ Lki ◦ L

j
` = ωik ∧ ω`j ⊗ δk`L

j
i

= ωik ∧ ωkj ⊗ L
j
i .

The rest follows from theorem E.5.10.
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