
Advanced quantum mechanics

An introduction

p

Ep

mc2

−mc2

Dominik Tschimmel



This page intentionally left blank.



Preface
Introductory quantum mechanics courses usually focus on one non-relativistic particle
and/or on one space dimension. After the essentials of quantum mechanics are under-
stood, the natural question is, what happens upon removing the restrictions. This is,
where advanced quantum mechanics enters.

Fixing the issues of the Dirac theory, developed in advanced quantum mechanics,
leads to a many particle theory. The description of the relativistic quantum many
body system leads to objects, called Field operators. This is the onset of quantum field
theory. The concepts of canonical quantization and functional integrals are introduced
as outlook on qft.

Some parts of these notes were created, at the time I was learning the corresponding
concepts. So be aware, that there may not only be the usual typos, but possibly wrong
statements. In that sense, read with caution. However, nothing presented here is new,
and usually well covered in textbooks.
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Part I.

Advanced quantum mechanics

As the name suggests, the topics presented here are usually part of a followup
course to introductory quantum mechanics. Introductory quantum mechanics
focuses on non-relativistic single particles and scattering in one dimension. In
this part, scattering in generalized to three dimensions. Also, a many particle
theory, that goes by the name second quantization is developed. Finally, the
attempt of a relativistic generalization is made by introducing the Dirac theory.
This part concludes by combining second quantization with the Dirac theory,
to solve the problems that arise from the latter alone. This leads in a natural
way to quantum field theory.



1
Scattering theory
In modern physics, from high energy physics to solid state physics, lots of experiments are essentially
scattering experiments. In that regard, the quantum mechanical description of scattering processes
is of great importance to understand those experiments completely. This chapter is completely
based on [Zir10], with some aspects from [Alt12].

1.1. Differential cross section

We consider a beam of particles that hits a target. Choosing the coordinates such that
the initial beam moves along the z-axis, the setup can be depicted as follows:

Target
z

x

Φ

θ

The (probability) current density of the incoming particles is j = j0[dx ∧ dy,Or]. The
coefficient j0 has the dimension

[j0] = number of particles
time · area .

After the scattering, the scattered particles move radially away from the scattering
center, if observed from a large distance. Thus the current density is best described in
spherical coordinates: J = J0[sin(θ)dθ∧ dφ,Or]. The coefficient here has the dimension

[J0] = number of particles
time .

The current density should have the dimension particles/time. Since the 2-form dx∧ dy has
the dimension length2, there has to be an addition 1/area in the dimension of j0. Notice
that some authors use an additional 1/solid angle in the dimension of J0. However this
dimension is dimensionless in fact, though experimental physicists like to give it a unit,
so we will omit it.
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Definition 1.1.1.
The differential cross section dσ

dΩ is defined by

dσ

dΩ = J0

j0
.

It should be emphasized here, that the differential cross section is no derivative by any
means. Mathematically it is a mere notation of the quantity. From the dimension of
the coefficients j0 and J0 it follows that the differential cross section has the dimension
area.

Definition 1.1.2.
The total cross section σtot is the differential cross section, integrated over the
full solid angle:

σtot :=
∫
S2

dσ

dΩ dΩ = 1
j0

∫
S2
J .

1.2. Lippmann-Schwinger equation

So far, quantum mechanics has not entered in the discussion of scattering. In fact, the
previous definitions hold for classical scattering as well.

1.2.1. Representation independent

We consider a time-independent Hamilton operator Ĥ, that can be written as sum
Ĥ = Ĥ0 + V̂ of a free (or known) Hamiltonian Ĥ0 and a potential/perturbation V̂ .
Suppose |ψ0〉 is a solution of the free Hamiltonian Ĥ0|ψ0〉 = E|ψ0〉. We are looking for
a solution of the full Hamiltonian, with the same energy:

Ĥ|ψ〉 = Ĥ0|ψ〉+ V̂ |ψ〉 = E|ψ〉 .

Theorem 1.2.1.
Let Ĝ0 = (E + iε − Ĥ0)−1 be the inverse operator. If |ψ〉 is a solution of the
equation

|ψ〉 = |ψ0〉+ Ĝ0V̂ |ψ〉 ⇔ |ψ0〉 = (1− Ĝ0V̂ )|ψ〉

then |ψ〉 solves Ĥ|ψ〉 = E|ψ〉 for ε ↘ 0, if the full Hamiltonian Ĥ has eigen
states |xn〉, that define a Hilbert basis.

Proof 1.2.2.
Rewriting of the equation yields:

|ψ0〉 = Ĝ0
(
Ĝ−1

0 − V̂
)
|ψ〉 .
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Define Ĝ = (E + iε− Ĥ)−1, then from Ĝ−1 = E + iε− Ĥ and Ĝ−1
0 = E + iε− Ĥ0,

it follows that

Ĝ−1 = Ĝ−1
0 − V̂ and thus |ψ0〉 = Ĝ0Ĝ

−1|ψ〉 .

Left multiplication of the inverse operators results in:

|ψ〉 = ĜĜ−1
0 |ψ0〉 = Ĝ

(
E + iε− Ĥ0

)
|ψ0〉 = iεĜ|ψ0〉 .

Hence (
E − Ĥ

)
|ψ〉 = iε

(
E − Ĥ

)
Ĝ|ψ0〉 .

It remains to show, that
(
E − Ĥ

)
Ĝ(ε) is bounded, such that for ε→ 0, the claim

follows:
0 =

(
E − Ĥ

)
|ψ〉 ⇒ Ĥ|ψ〉 = E|ψ〉 .

By assumption there is an eigen Hilbert basis {|xn〉}, such that

Ĥ|xn〉 = En|xn〉 ⇒ Ĝ−1|xn〉 = (E + iε− En)|xn〉 .

This means, that {|xn〉} is a Hilbert basis of Ĝ:

Ĝ−1|xn〉 = (E + iε− En)|xn〉 ⇔ Ĝ|xn〉 = 1
E − En + iε

|xn〉 .

In the following we will use the matrix representation w.r.t. the eigen basis {|xn〉}.
This does not need Ĝ to be bounded (see remark A.1.8 for this):

〈ψ|(E − Ĥ)Ĝ|ψ〉 =
∑
m,n

〈ψ|xm〉〈xm|(E − Ĥ)Ĝ|xn〉〈xn|ψ〉

=
∑
m,n

〈ψ|xm〉〈xn|ψ〉
E − En

E − En + iε
〈xm|xn〉

=
∑
m,n

〈ψ|xm〉〈xn|ψ〉
E − En

E − En + iε
δmn

=
∑
n

|〈xn|ψ〉|2
E − En

E − En + iε
.

Boundedness means that ‖(E − Ĥ)Ĝ‖Op < ∞. Lemma A.2.5 allows to restrict
to |ψ〉 with ‖|ψ〉‖ ≤ 1. It follows that ∑n |〈xn|ψ〉|2 holds, and it remain to show∣∣∣ E−En
E−En+iε

∣∣∣ ≤ 1 or equivalently
∣∣∣ E−En
E−En+iε

∣∣∣2 ≤ 1. For convenience we write χn = E−En
in the following:

χn
χn + iε

= χn(χn − iε)
χ2
n + ε2 = χ2

n

χ2
n + ε2 − i

χnε

χ2
n + ε2

⇒
∣∣∣∣∣ χn
χn + iε

∣∣∣∣∣
2

= χ4
n + χ2

nε
2

(χ2
n + ε2)2 ≤ 1 .

Thus we have shown:

|〈ψ|(E − Ĥ)Ĝ|ψ〉|2 ≤ 1 ∀ |ψ〉 with ‖|ψ〉‖ ≤ 1

⇒ ‖(E − Ĥ)Ĝ‖Op ≤ 1 ∀ε .
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Definition 1.2.3.
The equation |ψ〉 = |ψ0〉+ Ĝ0V̂ |ψ〉 is called Lippmann-Schwinger equation.
Here it is given in the general form without choice of representation.

1.2.2. Position representation

The Lippmann-Schwinger equation that we have used so far may not be the version
that can be found in all textbooks. Its more common form is the equation that results
using the position representation of quantum mechanics.
Let (as usual) the operators Ĥ0 and V̂ be

Ĥ0 = − ~2

2m∇
2 and V̂ = V (~x) .

Theorem 1.2.4.
The operator Ĝ0 can be expressed as integral operator in the position representation

〈~x|Ĝ0|ϕ〉 =
∫
R3
dy3 〈~x|Ĝ0|~y〉〈~y|ϕ〉 ,

with Green’s function

〈~x|Ĝ0|~y〉 = − 1
4π

eik|~x−
~~y|

|~x− ~~y|
2m
~2 .

Proof 1.2.5.
Fundamental solution of the Laplace operator ∇2 in R3:
We consider the function f(~x) = 1

|~x| . With ∇2 = ?d ? d for functions in R3 we
calculate:

(∇2Tf )[ϕ] =
∫
R3\{0}

f∇2ϕ dx3 =
∫
R3\{0}

f · ?d ? dϕ dx3

=
∫
R3\{0}

fd ? dϕ = lim
ε→0

∫
∂(R3\Bε(0))

f ? dϕ

︸ ︷︷ ︸
=0

−
∫

R3\{0}

df ∧ ?dϕ

= −
∫

R3\{0}

dϕ ∧ ?df = − lim
ε→0

∫
∂(R3\Bε(0))

ϕ ∧ ?df +
∫

R3\{0}

ϕ · d ? df .

Since f(~x) = 1
|~x| is harmonic on R3 \ {0}, i.e. ∇2f = 0 and thus d ? df = 0, it

follows that:

(∇2Tf )[ϕ] = − lim
ε→0

∫
∂(R3\Bε(0))

ϕ ∧ ?df = lim
ε→0

∫
∂(R3\Bε(0))

ϕ dΩ

= − lim
ε→0

∫
∂Bε(0)

ϕ dΩ = −4πϕ(0) .
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Hence the fundamental solution for the Laplace operator in R3 is

Th mit h(~x) = − 1
4π|~x| .

Fundamental solution for E − Ĥ0:
Because of rotation invariance, we can simplify calculations using spherical coordi-
nates. The Laplace operator becomes ∇2 = 1

r
∂2
rr + ∆φ,θ, where ∆φ,θ denotes the

angular components, that vanish anyway because of rotation invariance.
The function u(r) = 2m

4π~e
ikr is smooth, such that u · Th = Tu·h is well defined.

Choose g(r) = −u(r) · h(r), then:

g(r) = −2m
4π~2

eikr

r
= −2m

4π~2

(
1
r
− 1− eikr

r

)
.

With ∇2 = 1
r
∂2
rr it follows that

∇2
(

1− eik|~x|
|~x|

)
= 1
r
∂2
rr ·

(
1− eikr

r

)
+ ∆φ,θ

(
1− eikr

r

)

= k2eikr

r
= k2eik|~x|

|~x|
.

For the regular distribution Tg that means:

∇2Tg = −2m
4π~2

∇2T 1
r
−∇2T( 1−eikr

r

) = 2m
~2 δ(~x) + k2Tg .

The energy expressed in terms of the wave number k is E = ~2k2

2m . Thus Tg is the
fundamental solution for E − Ĥ0:(

E + ~2

2m∇
2
)
Tg = δ(~x) +

(
−~2k2

2m + E

)
Tg = δ(~x) .

Green’s function for E − Ĥ0:
Using corollary F.2.21 we get the Green’s function

〈~x|Ĝ0|~y〉 ≡ G(~x, ~y) = g(~x− ~y) = − 1
4π

eik|~x−
~~y|

|~x− ~~y|
2m
~2 .

To be precise, we understand the Green’s function integral operator as inverse of the
corresponding differential operator, as it defines the (weak) solution of the differential
equation by action on the inhomogeneity (see theorem F.2.15).
We finally see, how the Lippmann-Schwinger equation looks in the position

representation:

ψ(~x) = ψ0(~x)− 2m
4π~2

∫
R3

eik|~x−
~~y|

|~x− ~~y|
V (~y)ψ(~y) dy3
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1.3. Scattering amplitude

Revisiting the scattering setup from the beginning of this chapter in a quantum
mechanical point of view means to investigate the full wave function ψ(p) at a point p
that is far away from the scattering center σ.
Assuming a scattering potential that has compact support (rapidly decreasing at

least), the full wave function can be approximated by

ψ(p) ' ψ0(p) + eikrσ(p)

rσ(p) f(~k′, k, ψ) ,

with distance function rσ(p) = d(p, σ). The term f(~k′, k, ψ) is called scattering
amplitude.
Although we have chosen the coordinate independent formulation as starting point,

the calculations from [Alt12] carry over without changes. First, we write the Lippmann-
Schwinger equation in the coordinate free way:

ψ(p) = ψ0(p)− 2m
4π~2

∫
E3

eikrp

rp
V ψ dV

To obtain the desired approximation, we need an approximation for rp(q). As E3 is an
affine space, there are vectors ~x and ~y, such that p = σ + ~x(p) and q = σ + ~y(q). It
follows that

rp(q) = |~x− ~y| =
√
|~x|2 + |~y|2 − 2~x · ~y = |~x|

√√√√1 + |~y|
2

|~x|2
− 2~x · ~y
|~x|2

.

By construction we have |~x| � |~y|, allowing to use the following approximation

1 + |~y
2|
|~x|2
− 2~x · ~y
|~x|2

' 1− 2~x · ~y
|~x|2

.

The Taylor expansion
√

1− x = 1 + x
2 +O(x2) around x0 = 0 results in

|~x− ~y| ' |~x| − ~x · ~y
|~x|

= rσ(p)2 + ~k′ · (q − σ) ,

where we defined ~k′ = k ~x
|~x| , that points from the scattering center radially towards the

detector and has the same norm as the wave vector ~k. It follows:

− 2m
4π~2

∫
E3

eikrp

rp
V ψ dV ' − m

2π~2

∫
E3

eikrσ(p)−i~k′·(q−σ)

rσ(p)− ~k′ · (q − σ)
V (q)ψ(q) dVq ,

where we have made the q dependence explicit, to make the integration more transparent.
In the case rσ(p)→∞, the following approximation is asymptotically valid:

− 2m
4π~2

∫
E3

eikrp

rp
V ψ dV ' eikrσ(p)

rσ(p) f(~k′, k, ψ)
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~y

~x

~x−
~y~k

~k
′

Figure 1.1.: Scattering setup

with f(~k′, k, ψ) = − m

2π~2

∫
E3

e−i
~k′·(q−σ)V (q)ψ(q) dVq .

Choosing σ as coordinate origin, the scattering amplitude becomes:

f(~k′, k, ψ) = − m

2π~2

∫
R3

e−i
~k′·~yV (~y)ψ(~y) dy3 = − m

2π~2 〈~k
′|V̂ |ψ〉 .

Theorem 1.3.1.
The differential cross section of plane waves is related to the scattering amplitude
by

dσ

dΩ ' |f(~k,~k′, ψ)|2 .

Proof 1.3.2.
To full wave function ψ is a super position of the incoming plane wave ψi(~x) = eikz

and the scattered wave ψs = ψ − ψi. We know that plane waves are solutions of
the free Hamiltonian Ĥ0, that is ψ0 = ψi. We thus have:

ψ = eikz + ψs ' eikz + eikr

r
f(~k,~k′, ψ) .

With the definition of the probability current density 2-form j = ~
m
? Im(ψ · dψ)

we get:
ji = k~

m
[dx ∧ dy,R]

and js = k~
m

f(~k,~k′, ψ) · f(~k,~k′, ψ)[sin(θ)dθ ∧ dφ,R] .

Using the definition of the differential cross section (definition 1.1.1), we get:

dσ

dΩ = f(~k,~k′, ψ) · f(~k,~k′, ψ) = |f(~k,~k′, ψ)|2 .
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1.4. Born approximation

To motivate the Born approximation we introduce a generalization of the geometric
series for bounded operators:

Proposition 1.4.1.
Let (X, || · ||) be a Banach space and T : X → X a bounded operator. If the
Neumann series

∞∑
k=0

T k converges with respect to the operator norm || · ||op then
(1− T ) is invertible and:

(1− T )−1 =
∞∑
k=0

T k .

Rewriting the Lippmann-Schwinger equation, we can obtain a form to use the Neumann
series:

|ψ〉 = (1− Ĝ0V̂ )−1|ψ0〉 .

If Ĝ0V̂ is bounded, |ψ〉 can be calculated from a series of operators, acting on |ψ0〉:

|ψ〉 =
∞∑
n=0

(
Ĝ0V̂

)n
|ψ0〉 .

In the special case ||Ĝ0V̂ ||op � 1, the series can be terminated after the first two
summands, called first order Born approximation:

|ψ〉 = |ψ0〉+ Ĝ0V̂ |ψ0〉 .

If we assume the incoming wave to be a plane wave,

〈~y|ψ0〉 = ei
~k·~y ,

the scattering amplitude becomes essentially the Fourier transformation of the potential:

f(~k,~k′) = − m

2π~2

∫
R3

ei(
~k−~k′)·~yV (~y) dy3 = − m

2π~2 〈~k − ~k
′|V 〉 .

Lemma 1.4.2.
Let V be a spherical symmetrical potential V (~x) = V (r). For elastic scattering,
i.e. |~k| = |~k′|, the scattering amplitude can be calculated with

f(~k,~k′) = f(k, ϑ) = − 2m
~2∆k

∞∫
0

r sin(∆kr)V (r) dr ,

where ∆k = 2k sin(ϑ/2).
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Proof 1.4.3.
We define ∆~k = ~k′ − ~k. Choose coordinates such that ∆~k is directed alongside the
z-axis. Calculating f(~k,~k′) in spherical coordinates results in:

f(~k,~k′) = − m

2π~2

∫
R3

e−i∆kr cos(θ)V (r)r2 sin(θ)dr dφ dθ

= −2m
~2

∞∫
0

1∫
−1

e−i∆kr cos(θ)V (r)r2d(cos(θ)) dr

= − 2m
~2∆k

∞∫
0

r sin(∆kr)V (r) dr .

The relation between ∆k and k can be seen (trigonometry) from the following figure:

~k
′

~k

∆~k
ϑ

1.5. Scattering operator

Technically we have not considered scattering processes so far. Formally speaking, we
have considered perturbations of the free Hamiltonian by a potential. That is, we have
considered a stationary solution of the free Hamiltonian (plane wave) to find a solution
of the full problem. A basic assumption to do so, is the time independence of the
potential (or at least a slowly variation).

t→ −∞
t→ +∞

Ŵ− Ŵ+

Ŝ|ψ−(0)〉 |ψ+(0)〉

|ψ(0)〉

Ût|ψ−〉 Ût|ψ+〉

V̂t|ψ〉

Figure 1.2.: Visualization of time dependent scattering. See [Zir10, p. 17] for the original
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With scattering, in an intuitive meaning, we would associate the collision of two
objects, or waves and fields for that matter, that change over time. The time dependence
of the states can be expressed by a time evolution operator, such that

|ψ0(t)〉 = Ût|ψ0〉 and |ψ(t)〉 = V̂t|ψ〉 .

From the Schrödinger equation we can see the equation for the full interaction time
evolution operator V̂t and the interaction free time evolution operator Ût:

i~∂tV̂t = ĤV̂t and i~∂tÛt = ĤÛt .

Here the Hamiltonians need no longer be time-independent. The whole idea of the
time-dependent scattering can be understood from figure 1.2:
Let |ψ(t)〉 be the state that describes the particle that is scattered. In the distant

past, the particle will have been far away from the scattering potential and thus be
moving freely essentially. Formally, we assume that there is an eigen state |ψ−(t)〉 of
Ĥ0, such that

lim
t→−∞

|ψ−(t)〉 = lim
t→−∞

|ψ(t)〉 .

Before we investigate this assumption any further, we will consider the distant future,
as it imposes some difficulty. The state of the scattered particle may contain some
component, that describes a bounded state (non zero projection on the space of bounded
states). This component will not describe free motion even in the distant future. Since
the norm is a continuous operator and thus limit and norm commute, our problem
translates to

lim
t→−∞

‖V̂t|ψ〉 − Ût|ψ−〉‖ = lim
t→−∞

‖|ψ(t)〉 − |ψ−(t)〉‖

= ‖ lim
t→−∞

|ψ(t)〉 − lim
t→−∞

|ψ−(t)〉‖ = 0

but lim
t→+∞

‖V̂t|ψ〉 − Ût|ψ+〉‖ = lim
t→+∞

‖|ψ(t)〉 − |ψ+(t)〉‖

= ‖ lim
t→+∞

|ψ(t)〉 − lim
t→+∞

|ψ+(t)〉‖ 6= 0 .

To solve that problem, we will have to choose a different |ψ〉+. To find the condition
that determines |ψ+〉, we pass to the non-limit case first.
Any time evolution operator is unitary:

Proof 1.5.1.
The adjoint operator satisfies −i~∂tV̂ †t = V̂ †t Ĥ, since the Hamiltonian is self adjoint.
Plugging this in, yields:

∂t〈V̂tφ|V̂tψ〉 = ∂t〈φ|V̂ †t V̂t|ψ〉 = 〈φ|(∂tV̂ †t )V̂t + V̂ †t ∂tV̂ |ψ〉
= 〈φ| i~ V̂

†
t ĤV̂t − i

~ V̂
†
t ĤV̂t|ψ〉 = 0 .

But that means:

〈V̂tφ|V̂tψ〉 = const.(t) and 〈V̂0φ|V̂0ψ〉 = 〈φ|ψ〉

⇒ 〈V̂tφ|V̂tψ〉 = 〈φ|ψ〉 .
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The unitarity has the following important properties for our purpose here:

V̂ †t V̂t = 1 and ‖V̂t|ψ〉‖ = ‖|ψ〉‖ = ‖V̂ †t |ψ〉‖ .

These properties allow to write

‖V̂t|ψ〉 − Ût|ψ±〉‖ = ‖|ψ〉 − V̂ †t Ût|ψ±〉‖ .

Definition 1.5.2.
The Møller operators W± are defined by

W± lim
t→±∞

V̂ †t Ût ,

if the limits exist.

The existence of the Møller operators is not guaranteed. From the physically reasoning
above, we assume W− to exist. The existence of W+ however will be assumed as
problem, that has to be checked for every scattering scenario independently. In the case
of existence, the conditions for |ψ±〉 are:

‖|ψ〉 −W±|ψ±〉‖ = 0 ⇔ |ψ〉 = W±|ψ±〉 .

As can be seen in figure 1.2, the Møller operators map |ψ±〉 to the scattered state |ψ〉
at the moment of scattering. This motivates the following definition:

Definition 1.5.3.
If range(Ŵ−) ⊂ domain(Ŵ †+), the scattering operator Ŝ is defined by

Ŝ = Ŵ †
+Ŵ− .

The scattering operator maps |ψ−〉, that describes the state of scattered particle in the
distant part, to |ψ+〉, that describes the free components of the state of the particle in
the distant future.



2
Second quantization

The name second quantization, motivated by its historic origin, can be misleading. A more
appropriate name for this chapter would be “many particle systems of fermions and bosons”.
Before the formulation of second quantization is introduced, we focus on distinguishable particles
first. In doing so, the Copenhagen postulate becomes a consequence of the quantum mechanical
description of measurement processes. This chapter is based on [Zir10] for the mathematical
background and [Sch08] for the connection to the textbook conventions.

2.1. Distinguishable particles

It is easiest to consider non-interacting particles first. Since a fundamental principle of
quantum mechanics is the indistinguishability of identical particles, we consider different
particles here. Most of this section can be found in [Sch13, Kapitel 20] in a different
mathematical formulation. However, the part about the measurement process follows
[RW08] closely.

2.1.1. Tensor Hilbert spaces and Dirac notation

Consider two systems, described by the Hilbert spaces H1 and H2 respectively. To
describe both systems together, the tensor spaceH1⊗H2 is used. With that information,
from a mathematical point of view (see chapter C), all has been said about the Hilbert
space of non interacting distinguishable particles. However, the contemporary literature
mostly uses the Dirac notation, which needs further explanation.
Let |φ〉1 ∈ H1 and |ψ〉2 ∈ H be two states of their respective systems. These states

define a state in H1 ⊗H2:

|φ〉1|ψ〉2 := |φ〉1 ⊗ |ψ〉2 ∈ H1 ⊗H2 .

Furthermore it is common to not only drop the tensor product, but also the indices,
writing |φ〉|ψ〉, as long as no ambiguities arise. The bra-states 1〈φ| 2〈ψ| are defined,
using the isomorphism

(H1 ⊗H2)∗ ' H∗1 ⊗H∗2 .

It would also be possible to use (H1 ⊗H2)∗ ' H∗2 ⊗H∗1. However caution is necessary,
when using both, not to intermingle isomorphy and equality.

The hermitian scalar product of the tensor space defined by (|φ′〉 ⊗ |ψ′〉, |φ〉 ⊗ |ψ〉) =
〈φ′|φ〉 · 〈ψ′|ψ〉 translates to

1〈φ
′| 2〈ψ

′||φ〉1|ψ〉2 = 〈φ′|φ〉 · 〈ψ′|ψ〉
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in the Dirac notation. Loosely speaking, bra-vectors and ket-vectors only connect, if
they belong to the same Hilbert space, otherwise they can pass through each other. This
rule also holds true for the interpretation of tensors as multilinear maps:

(|φ〉 ⊗ |ψ〉)(〈ψ′|) = 〈ψ′|ψ〉|φ〉 = 2〈ψ
′||φ〉1|ψ〉2

and (〈φ′| ⊗ 〈ψ′|)(|φ〉) = 〈ψ′|〈φ′|φ〉 = 1〈φ
′| 2〈ψ

′||φ〉1 .

If the systems do not interact, the probability for the first system to be in the state |χ〉
and the second system to be in the state |ξ〉, should be the product of the individual
properties. Indeed , we find:

P (χ, ξ) = |〈χ| ⊗ 〈ξ||φ〉 ⊗ |ψ〉|2 = |〈χ|φ〉 · 〈ξ|ψ〉|2 = |〈χ|φ〉|2 · |〈ξ|ψ〉|2

= P1(χ) · P2(ξ) .

Lemma C.1.10 allows to construct operators for H := H1 ⊗H2 from operators A1 ∈
End(H1) and A2 ∈ End(H2):

A1 = A1 ⊗ 1 ∈ End(H) and A2 = 1⊗ A2 ∈ End(H) .

To check, that A1 is the correct transcription of A1, we can calculate the expectation
value:

〈A1〉Ψ = 〈Ψ|A1|Ψ〉 = 〈Ψ1|〈Ψ2|A1 ⊗ 1|Ψ1〉|Ψ2〉 = 〈Ψ1|A1|Ψ1〉 · 〈Ψ2|1|Ψ2〉︸ ︷︷ ︸
=1

= 〈A1〉Ψ1 .

2.1.2. Density matrix

Superposition of states fails to represent classical probabilities. Consider for example
a process, that creates an equal amount of spin up | ↑〉 and spin down | ↓〉 electrons.
Encountering one electron, the probability is 0.5 for each state. However, the super-
position | ↑〉+ | ↓〉 describe an electron with spin in x-direction (up to normalization).
Hence the need for a new quantity, to describe classical probabilities.

Definition 2.1.1.
Let Ψj be possible normalized states with probabilities pj . The density operator
ρ is defined by

ρ =
∑
j

pj|Ψj〉〈Ψj| :=
∑
j

pj|Ψj〉 ⊗ 〈Ψj| ∈ H ⊗H∗ .

The expectation value of an Operator A ∈ End(H) can be calculated using the trace:

〈A〉 =
∑
j

pj〈Ψj|A|Ψj〉 =
∑
n,j

pj〈Ψj|n〉〈n|A|Ψj〉

=
∑
n

〈n|

A∑
j

pj|Ψj〉〈Ψj|

 |n〉 =
∑
n

〈n|Aρ|n〉 = tr(Aρ)



2.1. Distinguishable particles 15

⇒ 〈A〉 = tr(Aρ) .

A property of density operators is to have unit trace tr(ρ) = 1. This can be seen from
the previous calculation using A = 1. It could seem annoying, that in calculating the
trace, a Hilbert basis was chosen. However, the next lemma shows, that the trace does
not depend on such a choice.

Lemma 2.1.2.
Let A ∈ End(H) be an operator defined by

A =
∑
k

pk|ψk〉〈φk| =
∑
k

pk|ψk〉 ⊗ 〈φk| ,

then the trace tr(A) can be calculated as follows (and thus does not depend upon
the choice of a Hilbert basis):

tr(A) =
∑
k

pk〈φk|ψk〉 .

Proof 2.1.3.
Let {〈j|}j be an arbitrary Hilbert basis. Using the completeness relation we see,
that:

tr(A) =
∑
j

Ajj =
∑
j

〈j|A|j〉 =
∑
j,k

pk〈j|ψk〉〈φk|j〉

=
∑
k

pk〈φk|

∑
j

|j〉〈j|

 |ψk〉 =
∑
k

pk〈φk|ψk〉

Theorem 2.1.4.
The time evolution of ρ(t) is determined by the von Neumann equation:

i~∂tρ(t) = −[ρ(t), H] .

Proof 2.1.5.
The Schrödinger equation yields the following equations:

i~∂t|ψn〉 = H|ψn〉 ⇒ −i~∂〈ψn| = 〈ψn|H .

Combining these equations results in the claim:

i~∂tρ =
∑
n

pn(H|ψn〉〈ψn| − |ψn〉〈ψn|H) = [H, ρ] .

For time independent Hamilton operators, a formal solution is given by ρ(t) =
e−iHt/~ρ(0) eiHt/~.
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Lemma 2.1.6.
The density operator ρ is hermitian and positive semi definite.

Proof 2.1.7.
i) 〈φ|ρ̂|χ〉 =

∑
n

pn〈φ|ψn〉〈ψn|χ〉 =
∑
n

pn〈χ|ψn〉〈ψn|φ〉 = 〈χ|ρ̂|φ〉 = 〈ρ̂φ|χ〉 ,

ii) 〈φ|ρ̂|φ〉 =
∑
n

pn|〈φ|ψn〉|2 ≥ 0 ∀ |φ〉 ∈ H .

Definition 2.1.8.
A state described by a density operator is called pure, if there is a |Ψ〉 ∈ H, such
that ρ = |Ψ〉〈Ψ|, otherwise it is called mixed .

Lemma 2.1.9.
A state is pure, if and only if tr(ρ2) = 1. Conversely, a state is mixed, if and only
if tr(ρ2) < 1.

Proof 2.1.10.

1. If ρ is pure, then:

ρ2 = |Ψ〉〈Ψ|Ψ〉〈Ψ| = |Ψ〉〈Ψ| = ρ ⇒ tr(ρ2) = tr(ρ) = 1 .

2. Since ρ is positive semi definite, there is a Hilbert basis, such that ρ =∑
n pn|ψn〉〈ψn| with pn ≥ 0. From tr(ρ) = 1 it follows, that∑

n

pn = 1 ⇒ tr(ρ2) =
∑
n

p2
n ≤

∑
n

pn = 1 .

Assuming tr(ρ2) = 1, then:

0 =
∑
n

pn −
∑
n

p2
n =

∑
n

pn(1− pn) ⇒ pn = 0 or pn = 1 .

Yet, since tr(ρ) = 1, there has to be an n0 such that pn0 = 1, and thus:

pn =
{

1 n = n0
0 n 6= n0

This means ρ = |ψn0〉〈ψn0 |, which would mean, that the state is pure.

So far, no further structure was imposed on the Hilbert space H. For that reason, the
density operator carries over seamlessly to many particle systems. For example, take
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the Hilbert space H = H1 ⊗ H2 from the previous subsection. With general states
|Ψj〉 = ∑

m,n |ψjm〉|φjn〉, the density operator becomes

ρ =
∑

j,m,m′,n,n′
pj|ψjm〉|φjn〉〈ψjm′|〈φjn′| ∈ H∗1 ⊗H∗2 ⊗H1 ⊗H2 ,

where all sums are finite. To define a partial trace operator

T1 : H∗1 ⊗H∗2 ⊗H1 ⊗H2 → H∗2 ⊗H2 ,

that acts as trace on the Hilbert space H1, we interpret bra-vectors as functionals on the
Hilbert space and ket-vectors as functionals on the dual space. Choosing an arbitrary
Hilbert basis {|`〉} on H1, we define

T1 =
∑
`

〈`| ⊗ 1⊗ |`〉 ⊗ 1 .

The action of T1 on ρ yields:1

T1ρ =
∑
j,m,n

pj
∑
`

〈ψjm′ |`〉〈`|ψjm〉|φjn〉〈φjn′|

=
∑
j

pj

∑
m,m′
〈ψjm′ |ψjm〉

∑
n,n′
|φjn〉〈φjn′|

 .

The normalization condition for |Ψj〉 results in

1 = 〈Ψj|Ψj〉 =
∑
m,m′
〈ψjm′|ψjm〉

∑
n,n′
〈φjn|φjn′〉

 .

This allows to choose coefficient such that ∑m,m′〈ψjm′|ψjm〉 = 1. Also, by the multilin-
earity of the tensor product:

∑
n,n′
|φjn〉〈φjn′| =

(∑
n

|φjn〉
)
⊗
(∑

n′
〈φjn′ |

)
:= |Φj〉〈Φj| ,

with |Φj〉 ∈ H2. Finally we see, that

T1ρ =
∑
j

pj|Φj〉〈Φj|

is a density operator on H2.

Definition 2.1.11.
Let ρ be a density operator on H1 ⊗ H2, then T1ρ is called reduced density
operator on H2. In the same way, the reduced density operator T2ρ is defined
on H1.

1To exchange the infinite sum over ` with the other sums, we had to use, that the other sums are
finite.
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2.1.3. Measurement process

A measurement can be understood as two quantum systems, the one to be observed
HO, and the measurement system HS, i.e. the measurement device. The full system is
as explained above described by H = HO ⊗HM . The full Hamiltonian, that determines
the time evolution is assumed to be as sum of the observation system Hamiltonian HO,
the measurement system HM and an interaction Hamiltonian HI

H = HO +HM +HI .

The interaction Hamiltonian, as the same suggests, describes the interaction between
the observation system and the measurement system, allowing measurements to be
taken. An ideal measurement can be characterized as instantaneous, such that no time
development has to be taken into account. Also, a measurement is always defined w.r.t
a physical quantity, that means an Operator A. Assuming |αn〉 to be a Hilbert eigen
basis of A, the interaction Hamiltonian should look like

HI =
∑
n

|αn〉〈αn| ⊗HM(αn) .

The measurement process (time development) of a state |Ψ〉 = |αn〉|χ〉 creates a
state |Ψ′〉 = |αn〉|χ(αn)〉, where |χ(αn)〉 is a characteristic state in the measurement
system, corresponding to the state |αn〉. To idealize the measurement further, the
characteristic states are supposed to have no overlap with each other, such that they
can be distinguished perfectly even long after the measurement process:

〈χ(αm)|χ(αn)〉 = δmn .

Just before a measurement, the density operator can be written as follows:

ρ = |Ψ〉〈Ψ| =: |ψ〉|χ〉〈ψ|〈χ| =
∑
n,m

|ψ〉|αn〉〈αn|χ〉〈ψ|〈χ|αm〉〈αm|

=:
∑
n,m

cm,n |ψ〉|αn〉〈ψ|〈αm| ,

with cm,n = 〈αn|χ〉 · 〈χ|αm〉. After the measurement, a similar calculation shows, that
the density operator is

ρ′ =
∑
n,m

cm,n |αn〉|χ(αn)〉〈αm|〈χ(αm)| .

To see the effects of the measurement on the observation system, the reduced density
operator on HO is calculated:

T2ρ =
∑
j,m,n

cm,n 〈j|χ(αn)〉〈χ(αm)|j〉|αn〉〈αm|∑
j
|j〉〈j|1
=

∑
m,n

cm,n 〈χ(αm)|χ(αn)〉|αn〉〈αm|

=
〈ψ,αm|ψ,αn〉=δm,n

∑
m

cm,m |αm〉〈αm|
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After the measurement, the off-diagonal terms in the observation system have vanished.
The state has become an ensemble of possible eigenstates with probabilities cm,m =
|〈αm|χ〉|2. The meaning of density operators as realizations of statistical ensembles
suggests the Copenhagen postulate, as it does not describe superpositions, but rather
classical probabilities. This means, that after the measurement, the state in the
observation system, has collapsed in one definite eigenstate. Yet which one, is a matter
of the probability cm,m = |〈αm|χ〉|2.

2.2. Identical particles

t

x

(a)

t

x

(b)

Figure 2.1.: In the first case, the classical picture is illustrated. Each trajectory has infinite precise
spacial resolution, such that particles can be distinguished easily. In the second case, the quantum
mechanical case with high position uncertainty is depicted. Here it is impossible to distinguish the
particles, after they have come into reach of each other, i.e. forming a system.

As mentioned before, identical particles cannot be distinguished. Put differently, it
is not possible to label particles of the same sort in any way, that allows to identify
them later on. The first problem of such an undertaking is, that a particle type is
described by a set of quantum properties, that is the same for each individual particle.
Each electron has the same charge, the same mass and the same total spin. This
is a behavior, not common in classical mechanics, where there can always be found
properties that vary even between identical objects. One could assume, that constantly
observing a system would allow to keep track and distinguish each particle. However,
the uncertainty relations of several observables make this impossible. A high spacial
resolution leads to a high uncertainty of the momentum, i.e. the direction and magnitude
of movement. After the moment, one assigned each particle a number (not physically,
which is impossible, but mentally), it is not clear, which has moved in which direction.
The assignment is of no use for that matter.

On the other hand, having a high momentum resolution results in a high position
uncertainty. It is no longer possible to discern the particles separately, such that any
assignment of labels is of no use again. This is illustrated in figure 2.1.
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2.2.1. Symmetry postulate

A consequence of the indistinguishability of identical particles is, that any exchange of
these particles must not have any change of physical properties. Any description of a
system of particles must satisfy this rule.
We consider a system of n identical particles. In the last section we have seen, that

the Hilbert space for distinguishable particles is a tensor product H⊗n. Hence it is
reasonable, that the Hilbert space for identical particles is a subspace of H⊗n. To find
this subspace, we begin by considering general states

|ψ1〉 . . . |ψn〉 := |ψ1〉 ⊗ . . .⊗ |ψn〉 ∈ H⊗n .

A permutation operator P can be defined by

P (|ψ1〉 . . . |ψn〉) := |ψP (1)〉 . . . |ψP (n)〉 .

Before we continue to find restrictions for the states of identical particles, we show some
properties of the permutation operator:

Corollary 2.2.1.
Any transposition operator Pij is an involution, i.e. P 2

ij = 1. Any permutation
operator is unitary and all transposition operators are also hermitian.

Proof 2.2.2.
The first claim is obvious from permutations. The second claim follows from the
definition of the hermitian scalar product (·, ·) on tensor spaces:

(P (|φ1〉 . . . |φn〉), P (|ψ1〉 . . . |ψn〉)) = (|φP (1)〉 . . . |φP (n)〉, |ψP (1)〉 . . . |ψP (n)〉)

=
n∏
j=1
〈φP (j)|ψP (j)〉 =

n∏
j=1
〈φj|ψj〉

= (|φ1〉 . . . |φn〉, |ψ1〉 . . . |ψn〉) .

The last claim follows immediately from the previous two.

Lemma 2.2.3.
The eigen values p of a permutation operator can only be p = +1 and p = −1.
Also, if p is the eigen value of the permutation operator P for the eigen state |Ψ〉,
then p′ = p for all other permutation operators P ′ acting on |Ψ〉.

Proof 2.2.4.
Let Pij be a transposition operator, then

P 2
ij|Ψ〉 = 1|Ψ〉 = (aij)2|Ψ〉 ⇒ aij = ±1 .



2.2. Identical particles 21

Let P12|Ψ〉 = a12|Ψ〉, the |Ψ〉 is an eigen state to the eigen value aij = a12 of all
other transposition operators Pij with i 6= j. This can be seen by writing Pij as
follows:

Pij = P1j ◦ P2i ◦ P12 ◦ P2i ◦ P1j ⇒ aij = a2
1j · a2

2i · a12 = a12 .

Since all permutations can be written as product of transpositions, it follows that
P |Ψ〉 = a12|Ψ〉 for all permutation operators.

The tensor space H⊗n can be written as direct sum of a symmetric and an antisymmetric
space H⊗n = Sn(H)⊕ ∧n(H):

Pij|Ψ〉 = |Ψ〉 ∀ |Ψ〉 ∈ Sn(H) and Pij|Ψ〉 = −|Ψ〉 ∀ |Ψ〉 ∈
∧n(H) .

There could be other subspaces, that mix symmetric states and antisymmetric states.
However, observations show, that this is not the case. Hence we postulate:

symmetry postulate
States of identical particles are either completely symmetric or com-
pletely antisymmetric. Particles with completely symmetric states are
called bosons and particles with completely antisymmetric states are
called fermions.

2.2.2. (Anti-)Symmetrization and scalar products

The symmetric and the wedge product can be constructed from tensor products. For
that purpose we define the (anti-)symmetrization operators:

S+ =
∑
P∈Σn

P and S− =
∑
P∈Σn

sgn(P ) · P .

Lemma 2.2.5.
The symmetrization operator S+ symmetrizes and the antisymmetrization operator
S− antisymmetrizes states in H⊗n.

Proof 2.2.6.
Consider a transposition operator Pij, then:

Pij(S+|Ψ〉) = Pij
∑
P∈Σn

P |Ψ〉 =
∑
P∈Σn

(Pij ◦ P )|Ψ〉 =
∑
P∈Σn

P ′(P )|Ψ〉

=
∑

P ′∈Σn
P ′|Ψ〉 = S+|Ψ〉 .

In the same way:

Pij(S−|Ψ〉) =
∑
P∈Σn

sgn(P ) · (Pij ◦ P )|Ψ〉 =
∑
P∈Σn

−sgn(Pij ◦ P ) · (Pij ◦ P )|Ψ〉

= −
∑

P ′∈Σn
sgn(P ′) · P ′|Ψ〉 = −S−|Ψ〉 .
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The operators S± allow to define a symmetric and a wedge product, with a normalization
factor that is rather uncommon, but necessary to obtain the right scalar product:

|ψ1 ∨ . . . ∨ ψn〉 ≡ |ψ1〉 ∨ . . . ∨ |ψn〉 := 1√
n!
S+(|ψ1〉 ⊗ . . .⊗ |ψ〉n) ∈ Sn(H) ,

|ψ1 ∧ . . . ∧ ψn〉 ≡ |ψ1〉 ∧ . . . ∧ |ψn〉 := 1√
n!
S−(|ψ1〉 ⊗ . . .⊗ |ψ〉n) ∈

∧n(H).

Lemma 2.2.7.
The scalar product induced by the scalar product on H⊗n, has the following form
on Sn(H) and ∧n(H):

〈ψ1 ∨ . . . ∨ ψn|φ1 ∨ . . . ∨ φn〉 =
∑
P∈Σn

n∏
j=1
〈ψj|φP (j)〉

and
〈ψ1 ∧ . . . ∧ ψn|φ1 ∧ . . . ∧ φn〉 = det(〈ψi|φj〉)ij .

Proof 2.2.8.
Using the definition of ∨ we find:

〈ψ1 ∨ . . . ∨ ψn|φ1 ∨ . . . ∨ φn〉 = 1
n!

∑
P,P ′∈Σn

n∏
j=1
〈ψP ′(j)|φP (j)〉 =

∑
P∈Σn

n∏
j=1
〈ψj|φP (j)〉 .

The second equality used, that the sum over the permutations P ′ creates n!-times
the same combinations, since the product is commutative.

For the scalar product of ∧n(H) the Leibniz-formula of the determinant will be
used:

det(〈ψi|φj〉)ij . =
∑
P∈Σn

sgn(P )
n∏
j=1
〈ψj|φP (j)〉 .

⇒ 〈ψ1 ∧ . . . ∧ ψn|φ1 ∧ . . . ∧ φn〉 = 1
n!

∑
P,P ′∈Σn

sgn(P ′)sgn(P )
n∏
j=1
〈ψP ′(j)|φP (j)〉

= 1
n!

∑
P ′∈Σn

sgn(P ′)
n∏
j=1

det(〈ψi|φj〉)ij = det(〈ψi|φj〉)ij .

Because the determinant is alternating, the sign of sgn(P ′) is canceled out, such
that n!-times the same term is summed over, resulting in the last equality.

2.2.3. Representation on L2(R3)
Independent, if we are looking for a representation in the position, or in the momentum
space, in both cases we need a representation on L2(R3). All we need to do so, is
a definition for the symmetric and the wedge product. To stay consistent with the
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previous subsection, we define the coefficients different to the literature with a square
root. For Ψp ∈ Sp(L2(R3)) or Ψp ∈

∧p(L2(R3)) and analogously Ψq we define:

Φp ∨Ψq(~x1, ..., ~xp+q) := 1√
p! · q!

∑
P∈Σp+q

Φp(~xP (1), ..., ~xP (p)) ·Ψq(~xP (p+1), ..., ~xP (p+q)) ,

Φp ∧Ψq(~x1, ..., ~xp+q) := 1√
p! · q!

∑
P∈Σp+q

sgn(P ) · Φp(~xP (1), ..., ~xP (p)) ·Ψq(~xP (p+1), ..., ~xP (p+q)) .

2.3. Fock space

So far the description of identical particles lacks one principle of modern particle physics,
the creation and annihilation of particles. To fix this, we pass to the so called Fock
spaces for bosons F+ and fermions F−:

F+(H) =
∞⊕
N=0

SN(H) = S(H) F−(H) =
∞⊕
N=0

∧N(H) =
∧

(H) .

The direct sum shows a grading of the symmetric and the exterior algebra. The
hermitian scalar product of the last subsection carries over naturally because of this
grading:

〈c+ v + v ∨ w + u ∨ v ∨ w + ...|c′ + v′ + v′ ∨ w′ + u′ ∨ v′ ∨ w′ + ...〉

= c · c′ + 〈v|v′〉H + 〈v ∨ w|v′ ∨ w′〉S2(H) + ...

Although the descriptions of bosons and fermions share many properties, they are
discussed in different subsections for a clearer exposition, at the cost of redundancy.
The following subsections make use of the section D.4.

2.3.1. Bosons

The ground state, i.e. the state without any particle, is called vacuum state |0〉 ≡ 1 ∈
S0(H) ' C. Let |v〉 ∈ H and 〈ϕ| ∈ H∗. The bosonic Fock space representation allows
to understand these elements as linear maps on S(H) that increase and decrease the
degree respectively. Physically speaking, the representations DB(|v〉) and DB(〈v|) create
a particle in the state |v〉 and annihilate a particle in the dual state |v〉 respectively:

S0(H) ' C S1(H) ' H S2(H) S3(H) · · ·

DB(|v〉)

DB(〈v|)

DB(|v〉)

DB(〈v|)

DB(|v〉)

DB(〈v|)

DB(|v〉)

DB(〈v|)

Definition 2.3.1.
Let {|ej〉} be a Hilbert basis of H and {〈ej|} a dual Hilbert basis. The creation/
annihilation operators a†j/aj are defined by

a†j := DB(|ej〉) and aj := DB(ēj) .
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Corollary 2.3.2.
The bosonic creation/annihilation operators satisfy the canonical commutator
relations:

[a†j, a
†
k] = 0 [ak, ak] = 0 [ak, a†j] = δjk1 ∀ j, k .

Proof 2.3.3.
This is just a special case of theorem D.4.6.

Definition 2.3.4.
The occupation number states are defined as follows:

|n1, nn, . . . , n`, . . .〉 := (a†1)n1

√
n1!

(a†2)n2

√
n2!

. . .
(a†`)n`√
n`!

. . . |0〉 .

Using the convention |v〉n = |v〉 ∨ . . . ∨ |v〉, where the symmetric product consists of n
copies of |v〉, the occupation number state takes the natural form:

|n1, nn, . . . , n`, . . .〉 = 1√∏
k nk!
|e1〉n1 ∨ |e2〉n2 ∨ . . . ∨ |e`〉n` ∨ . . . .

Theorem 2.3.5.
The occupation number states are a Hilbert basis of the bosonic Fock space.

Proof 2.3.6.
If ∑` n

′
` 6=

∑
` n`, the scalar product is zero by definition. Assume ∑` n

′
` 6=

∑
` n`

and let ni = n′j ∀ i, j:

〈n′1, n′2, ...|n1, n2, ...〉 = 1∏
k nk!

· (n1!〈e1|e1〉 · n2!〈e2|e2〉 · . . .) = 1 .

If there is one j with nj 6= n′j, the above scalar product becomes zero.
A Hilbert basis of Sn(H) is given by {|ej1〉∨...∨|ejn〉}j1≤...≤jn . For all |i1〉∨...∨|iN〉

it holds that:

|0, ..., 0, 1︸︷︷︸
j1

, 0, ..., 0, 1︸︷︷︸
jn

, 0, ...〉 = |j1〉 ∨ ... ∨ |jn〉 .

Lemma 2.3.7.
In the occupation number Hilbert basis, the creation/annihilation operators are
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characterized as follows:

a†j|n1, ..., nj, ...〉 =
√
nj + 1 |n1, ..., nj + 1, ...〉 ,

aj|n1, ..., nj, ...〉 = √nj|n1, ..., nj − 1, ...〉 .

Proof 2.3.8.

i)

a†j|n1, ..., nj, ...〉 = 1√∏
` n`!

(|e1〉n1 ∨ |e2〉n2 ∨ ... ∨ |`〉n` ∨ ...|ej〉nj+1 ∨ ...)

=
√
nj + 1√

(nj + 1)!
1√∏
`6=j n`!

(|e1〉n1 ∨ |e2〉n2 ∨ ... ∨ |e`〉n` ∨ ...|ej〉nj+1 ∨ ...)

=
√
nj + 1|n1, ..., nj + 1, ...〉

ii)

aj|n1, ..., nj, ...〉 = nj ·
1√∏
` n`!

(|e1〉n1 ∨ |e2〉n2 ∨ ... ∨ |e`〉n` ∨ ...|ej〉nj−1 ∨ ...)

= nj√
nj!

1√∏
`6=j n`!

(|e1〉n1 ∨ |e2〉n2 ∨ ... ∨ |`〉n` ∨ ...|ej〉nj−1 ∨ ...)

= √nj|n1, ..., nj − 1, ...〉

Corollary 2.3.9.
As the notation suggests, the creation/annihilation operators are adjoint to each
other.

Proof 2.3.10.

〈n′1, n′2, ...|a
†
j|n1, n2, ...〉 =

√
nj + 1 δn′jnj+1

∏
`6=j

δn′jn` =
√
n′j δn′j−1 nj

∏
` 6=j

δn′jn`

= (aj |n′1, n′2, ...〉, |n1, n2, ...〉) .

2.3.2. Fermions

In the case of fermions, the description is almost the same, using the fermionic Fock
space representation DF :



26 Chapter 2. Second quantization

∧0(H) ' C ∧1(H) ' H ∧2(H) ∧3(H) · · ·

DF (|v〉)

DF (〈v|)

DF (|v〉)

DF (〈v|)

DF (|v〉)

DF (〈v|)

DF (|v〉)

DF (〈v|)

As before, the creation/annihilation operators c†j/cj are defined by

c†j := DF (|ej〉) and cj := DF (〈ej|) .

Corollary 2.3.11.
The fermionic creation/annihilation operators satisfy the canonical anticom-
mutator relations:

{c†j, c
†
k} = 0 {cj, ck} = 0 {ck, c†j} = δjk1 ∀ j, k .

Proof 2.3.12.
This is just a special case of theorem D.4.4.

The different algebraic structure of ∧(H) compared to S(H) results in a different
behavior of fermions. Most notably is the Pauli exclusion principle. Due to the
antisymmetry of the wedge product, |v〉n = |v〉∧ . . .∧ |v〉 is non-zero only for n ∈ {0, 1}.

Pauli exclusion principle
Given state |v〉, then there can be either no ore only one particle in
that state, due to the antisymmetry of fermionic states.

The occupation number states are define in the same way as before. As consequence of
the Pauli exclusion principle nl ∈ {0, 1}, there is no need for normalization coefficients
(0! = 1! = 1):

|n1, nn, . . . , n`, . . .〉 := (c†1)n1(c†2)n2 . . . (c†`)n` . . . |0〉 .

The occupation number states are also a Hilbert basis for the fermionic Fock space. The
proof carries over without much changes. However, the creation/annihilation operators
look slightly different in the fermionic case, since the operators do not commute anymore:

c†j|n1, ..., nj, ...〉 = (1− nj)(−1)
∑

i<j
ni |n1, ..., nj + 1, ...〉 .

cj|n1, ..., nj, ...〉 = nj(−1)
∑

i<j
ni |n1, ..., nj − 1, ...〉 .

2.4. Second quantization of operators

We know already, how to construct operators on tensor spaces. The explicit construction
of the symmetric and wedge products, allows to extend the construction for both Fock
spaces. This will lead to the second quantization of operators, that can be found in
most textbooks. Before we do so however, we have to make some preparations:
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Assume a tensor operator Lα of the form

Lα = 1⊗ ...⊗ L︸︷︷︸
α

⊗ ...⊗ 1 ,

where L ∈ End(H). The sum over all postions of these operators becoms:
N∑
α=1

Lα(|v1〉 ∨ ... ∨ |vN〉) =
N∑
α=1

LαS+|v1〉...|vN〉

= L|v1〉 ∨ ... ∨ |vN〉+ |v1〉 ∨ L|v2〉 ∨ ... ∨ |vn〉+ ...+ |v1〉 ∨ ... ∨ L|vN〉 ,

N∑
α=1

Lα(|v1〉 ∧ ... ∧ |vN〉) =
N∑
α=1

LαS−|v1〉...|vN〉

= L|v1〉 ∧ ... ∧ |vN〉+ |v1〉 ∧ L|v2〉 ∧ ... ∧ |vn〉+ ...+ |v1〉 ∧ ... ∧ L|vN〉 .

In fact, without the construction from tensor operators, we could also have defined the
meaning of L1 ∨L2 and L1 ∧L2 accordingly. However, operators of the form ∑

α Lα are
enough for our purposes here.

2.4.1. Occupation number operator and exchange operators

Definition 2.4.1.
The operators Nj := a†jaj and Nj := c†jcj respectively, are called Occupation
number operators.

Lemma 2.4.2.
The occupation number operator returns the number of particles in the state |ej〉.

Proof 2.4.3.
Bosons

Nj|n1, ..., nj, ...〉 = √nja†j|n1, ..., nj − 1, ...〉 = √nj
√
nj|n1, ..., nj, ...〉

= nj|n1, ..., nj, ...〉

Fermions

Nj|n1, ..., nj, ...〉 = nj(−1)
∑

i<j
njc†j |n1, ..., nj − 1, ...〉

= (1− nj + 1)nj(−1)
∑

i<j
nj(−1)

∑
i<j

nj |n1, ..., nj, ...〉

= (2− nj)nj|n1, ..., nj, ...〉
nj∈{0,1}= nj|n1, ..., nj, ...〉

We define the one-body exchange operator σmn by σmn = ∑
α |em〉〈en|α, with

|em〉〈en|α := 1⊗ . . .⊗ |em〉〈en|︸ ︷︷ ︸
α

⊗ . . .⊗ 1 .
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Lemma 2.4.4.
For both bosons and fermions, the one-body exchange operator acts on the occupa-
tion number states as follows:

σmn|r1, r2, . . .〉 = a†man|r1, r2, . . .〉

and σmn|r1, r2, . . .〉 = c†mcn|r1, r2, . . .〉

Proof 2.4.5.
For bosons, the calculation is straight forward:

σmn|r1, r2, ...〉 = 1
∞∏
j=1

√
rj!

∑
α

(|em〉〈en|)α |e1〉r1 ∨ ... ∨ |em〉rm ∨ ... ∨ |en〉rn ∨ . . .

= rn
∞∏
j=1

√
rj!
|e1〉r1 ∨ ... ∨ |em〉rm+1 ∨ ... ∨ |en〉rn−1 ∨ . . .

= rn
√
rm + 1 1

√
rn
|r1, ..., rm + 1, ..., rn − 1〉

=
√
rm + 1√rn|r1, ..., rm + 1, ..., rn − 1〉

= a†man|r1, r2, ...〉 .

Fermions need further attention, for there is no commutation of elements. Yet, no
normalization factors appear (rj ∈ {0, 1}). Assume Œ n > m. Also let p denote
the number of elements missing between |em〉 and |en〉:

σmn|r1, r2, ...〉 =
∑
α

(|em〉〈en|)α |e1〉r1 ∧ ... ∧ |em〉rm ∧ ... ∧ |en〉rn ∧ . . .

= (1− rm)rn|e1〉r1 ∧ ... ∧ ∧... ∧ |em〉 ∧ . . .

= (−1)
∑

m<j<n
rj(1− rm)rn|e1〉r1 ∧ ... ∧ |em〉rm+1 ∧ ... ∧ |en〉rn−1 ∧ . . .

= −(1− rm)rn|e1〉r1 ∧ ... ∧ |em〉rm+1 ∧ ... ∧ |en〉rn−1 ∧ . . .
= −(1− rm)rn|r1, . . . , rm + 1, . . . , rn − 1, . . .〉

In the second line, the coefficients are the condition, that the whole term is non-zero
(rm = 0 and rn = 1). In the third line, the |em〉, that was on the n-th position
has been exchanged ∑m<j<n rj times, to reach the m-th position. But that means
rm → rm + 1 and rn → rn − 1.
On the other hand, we get (using rm = 0 in the first equality):

c†mcn|r1, r2, ...〉 = rn(−1)
∑

j<m
rj+
∑

m<j<n
rjc†m|r1, r2, ..., rn − 1〉

= (1− rm)rn(−1)
∑

j<m
rj+
∑

m<j<n
rj

· (−1)
∑

j<m
rj |r1, . . . , rm + 1, . . . , rn − 1, . . .〉

= (1− rm)rn(−1)
∑

m<j<n
rj |r1, . . . , rm + 1, . . . , rn − 1, . . .〉
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In the same way, we define the two-body exchange operator σijk` by σijk` =∑
α 6=β,β 6=α

|ei〉|ej〉〈ek|α〈e`|β with

|ei〉|ej〉〈ek|α〈e`|β = 1⊗ ...⊗ 1⊗ |ei〉〈ek|︸ ︷︷ ︸
α

⊗ 1⊗ ...⊗ |ej〉〈e`|︸ ︷︷ ︸
β

⊗ ...

=

1⊗ ...⊗ 1⊗ |ei〉〈ek|︸ ︷︷ ︸
α

⊗ 1⊗ ...



◦

1⊗ ...⊗ 1⊗ |ej〉〈e`|︸ ︷︷ ︸
β

⊗ 1⊗ ...


= |ei〉〈ek|α ◦ |ek〉〈e`|β .

Corollary 2.4.6.
For both bosons and fermions, the two-body exchange operator acts on the occupa-
tion number states as follows:

σijk` = a†ia
†
jaka` and σijk` = c†ic

†
jc`ck .

Proof 2.4.7.
Rewriting σijkl yields:

∑
α 6=β,β 6=α

|ei〉|ej〉〈ek|α〈e`|β =
(∑

α

|ei〉〈ek|α
)∑

β

|ej〉〈e`|β

−∑
α

|ei〉〈ek|α ◦ |ej〉〈e`|α

= a†iaka
†
ja` − δk,ja

†
ia` or c†ickc

†
jc` − δk,jc

†
ic` .

For Bosons, we get:

a†iaka
†
ja` − δk,ja

†
ia` =︸︷︷︸

[ak,a†j ]=δj,k1

a†ia
†
jaka` .

For Fermions, we get:

c†ickc
†
jc` − δk,jc

†
ic` =︸︷︷︸
{ck,c†j}=δk,j1

− c†ic
†
jckc` = c†ic

†
jc`ck .

2.4.2. One-body operators

One-body operators are operators in the usual sense. That is, they are operators that
act on each particle individually, without any interaction terms. The prime examples
would be the kinetic energy and external potentials. These operators can be written as

T =
∑
α

Tα ,
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where all Tα have the same operator T ∈ End(H) at position α. From

T = 1T1 =
∑
m,n

|em〉〈em|T |en〉〈en| =
∑
m,n

Tmn|em〉〈en| ,

we see, that we can write T in the following form (the matrix elements of T do not
depend upon α):

T =
∑
m,n

Tmn
∑
α

|em〉〈en|α :=
∑
m,n

Tmn · σm,n .

In the last subsection, we have already investigated, how to express the one-body
exchange operator σmn differently. We can write down the end result for the second
quantized one-body operator T directly:

T =


∑
m,n

Tmn a
†
man for bosons∑

m,n
Tmn c

†
mcn for fermions

Remark 2.4.8.
Let Q be the symmetric bilinear form and A the symplectic form from lemma
D.4.1, as well as T = ∑

m,n Tmn|em〉〈en| be a linear operator on H. Define the
corresponding elements in the Weyl- and Clifford algebra TW and TC by

TW = T =
∑
m,n

Tmn|em〉 ◦ 〈en| ∈ W(H⊕H∗, A) ,

TC = T =
∑
m,n

Tmn|em〉 ◦ 〈en| ∈ Cl(H⊕H∗, Q) .

Recalling the definitions of creation and annihilation operators (def. 2.3.1 etc. ),
we recognize T as representation DB(TW ) for bosons and DF (TC) for fermions.

2.4.3. Two-body operators

Besides external potential, there can be pair potentials between the particles. A prime
example are coulomb potentials. To accommodate for these situations, two-body
operators, that have to take into account all interaction between all particles, are
defined.

The pair interaction on H⊗n between a particle at position α and a particle at position
β can be expressed by

Vα,β =
∑
i,j,k,`

Vijkl · |ei〉|ej〉〈ej|α〈e`|β .

As in classical mechanics, instead of summing over all disjoint pairs α < β, we can sum
over all pairs α 6= β, and fix the double counting with the coefficient 1

2 :

V = 1
2

∑
α 6=β,β 6=α

Vα,β = 1
2

∑
α 6=β,β 6=α

∑
i,j,k,`

Vijk` · |ei〉|ej〉〈ej|α〈e`|β
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= 1
2
∑
i,j,k,`

Vijk`σijk` .

Thus, we get the common form of second quantized two-body operators:

V =


1
2
∑
i,j,k,`

Vijk` a
†
ia
†
jaka` for bosons

1
2
∑
i,j,k,`

Vijk` c
†
ic
†
jc`ck for fermions

Remark 2.4.9.
Similar to one-body operators, second quantized two-body operators V can be
regarded as representations DB(V W ) and DF (V C).



3
Dirac equation
The Dirac equation is an attempt to describe relativistic quantum mechanics. Despite its problems,
that get resolved in quantum field theory, the Dirac theory gives rise to the description of spin
in a natural way. It also suggested the existence of anti particles and it (or its field theoretic
counterpart) shaped the development of relativistic quantum mechanics significantly. This chapter
is again based on [Zir10].

3.1. Motivation

The Schrödinger equation is a quantum mechanical version of classical Hamiltonian me-
chanics. Since we already know, that special relativity generalizes classical mechanics1, a
quantum theory is expected to satisfy the energy momentum relation E =

√
p2c2 +m2c4.

The first attempt, using the correspondences E ↔ i~∂t and p2 ↔ −~2∇2, suffers from
the problem, that an operator √

~2c2∇2 +m2c4

does not seem to be reasonable. In a power series representation such an operator
would be non-local, containing derivatives up to infinite order. An attempt to fix this
problem is to use the squared energy momentum relation:

−~2∂2
t ψ = (~2c2∇2 +m2c4)ψ .

This equation is known as Klein-Gordon equation. We will not inquire this equation
any further, referring to the literature instead, but mention that the Klein-Gordon
equation does not give a continuity equation for a probability density. However, this
was an expectation at the time the equation was developed. The problem arises due to
the second order time derivative.

Motivated by this problem, Dirac sought to find a Hamilton operator H, that satisfies:

• H is linear in all derivatives,

• solutions to H satisfy the squared energy momentum relation.

The second condition has the same reason as before, finding a quantum mechanical
generalization that is compatible with special relativity. The first condition, that can
be regarded as motivation to overcome the problems of the Klein-Gordon equation,
are motivated by the following observation: In special relativity (as well as general
relativity) space and time are described as one structure, having one expect a first order
partial time derivative needing first order spatial derivatives.

1In fact, general relativity is a further generalization. However, so far no one has been able to unify
quantum mechanics and general relativity.
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Guided by these principles, the following ansatz is employed:

H = βmc2 + c2
3∑
j=1

αjp
2
j with pj = −i~∂xj .

To recover the energy momentum relation, the following algebraic relations are needed:

β2 = 1 βαj + αjβ = 0 , αjαk + αkαj = 2δjk . (3.1)

From these relations, it is clear that the Dirac coefficients β and αj are no elements of
any algebraic field. The Dirac equation then is

i~∂tψ = Hψ =
mc2β − i~c

3∑
j=1

αj∂xj

ψ .

3.2. Spinors and Dirac equation

To find a realization for β and αj we define new objects, derived from the Dirac
coefficients:

γ0 = β , γj = βαj = −αjβ . (3.2)

With the Lorentzian metric g = diag(1,−1,−1,−1) and the standard convention of
special relativity, x0 = ct, xj = xj, we obtain the new relations:

γµγν + γνγµ = 2gµν . (3.3)

Proof 3.2.1.
Assuming, the relations for the Dirac coefficients are satisfied, then:

γ0γ0 + γ0γ0 = 2β2 = 2 = 2g00 ,

γ0γj + γjγ0 = ββαj − αjββ = αj − αj = 0 ,
γiγj + γjγi = −(αiβ2αj + αjβ

2αi) = −(αiαj + αjαi) = −2δij = 2gij .
The other direction follows from the same equations.

Lemma 3.2.2.
The Dirac equation, written in terms of γµ, has the form(

γµ∂µ + i
mc

~

)
ψ = 0 .

This equation is called covariant Dirac equation
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Proof 3.2.3.

0 =
(
γµ

∂

∂xµ
+ i

mc

~

)
ψ =

β
c
∂t − β

3∑
j=1

αj∂xj + i
mc

~

ψ
β2=1⇔ ∂tψ = − i

~
βmc2ψ + c

3∑
j=1

αj∂xj

⇔ i~∂tψ = mc2βψ − i~c
3∑
j=1

αj∂xjψ

Remark 3.2.4.
The name “covariant” comes from the fact, that the covariant Dirac equation is
form invariant under rotations in the Minkowski space. We will prove this in the
context of electromagnetic fields in theorem 3.3.1.

After we have established the Dirac equation in this new form, using the γµ-s, we can
investigate the relations (3.3), that look like Clifford algebra relations. Remembering
the spinor representation (see section D.3), the γµ-s can be understood as linear maps
as well as elements of a Clifford algebra.
The spinor representation in section D.3 was constructed for the Euclidean scalar

product, on the space ∧(P ). Here, we have the Minkowski scalar product, and, as the
position of the indices symbolize, covariant objects. The former will need a different
polarization, while the latter has no severe impact.

Theorem 3.2.5.
Let (R4, g) be the Minkowski space with g-orthonormal basis {e0, . . . , e3} an choose
the polarization C4 = P ⊕ P ∗ with

P = spanC

{
c1 := 1

2(e0 + e3) , c2 := 1
2(e1 − ie2)

}
,

P ∗ = spanC

{
c∗1 := 1

2(e0 − e3) , c∗2 := 1
2(e1 + ie2)

}
.

Let DS : Cl(C4, g)→ End(∧(P )) be the spinor representation, then γµ := gµνγν :=
gµνDS(eν) satisfy the relations (3.3) and have the following matrix representation:

γ0 =
(

0 1C2

1C2 0

)
, γj =

(
0 σj
−σj 0

)
,

where σj denote the Pauli matrices.
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Proof 3.2.6.
That the relations (3.3) are satisfied is a direct consequence of the homomorphy of
DS and the diagonality of g. Also, we will only show the claim for γ0, as the rest
follows in exactly the same way. Before we do so, we calculate c∗1(c1):

c∗1(c1) = 2g(c∗1, c1) = 1
2(g(e0, e0)− g(e1, e1)) = 1

2(1 + 1) = 1 .

The basis of ∧(P ) is {1, c1 ∧ c2, c1, c2}, where we chose this strange order, to
obtain the desired matrix representation. The actions of c1 and c∗1 are:

DS(c1)1 = c1 , DS(c1)c1 = 0 , DS(c1)c2 = c1 ∧ c2 , DS(c1)c1 ∧ c2 = 0 ,
DS(c∗1)1 = 0 , DS(c∗1)c1 = 1 , DS(c∗1)c2 = 0 , DS(c∗1)c1 ∧ c2 = c2 .

Since e0 = c1 + c∗1 and DS is also linear, we can read of the action of e0:

γ01 = Ds(e0)1 = c1 , γ0c1 = Ds(e0)c1 = 1 , γ0c2 = Ds(e0)c2 = c1 ∧ c2 ,

γ0c1 ∧ c2 = Ds(e0)c1 ∧ c2 = c2 .

Thus the matrix representation of γ0 = g00γ0 = γ0 choosing

{1, c1 ∧ c2, c1, c2} =
{( 1

0
0
0

)
,
( 0

1
0
0

)
,
( 0

0
1
0

)
,
( 0

0
0
1

)}
is

γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =
(

0 1C2

1C2 0

)
.

The other γµ-s follow in the same way.

Remark 3.2.7.
These matrix representations of the γµ-s are called Dirac matrices, in the so
called Weyl representation. There are other matrix representations of the
Dirac matrices, for example the Dirac representation. Define the matrices

A = 1√
2

(
12 −12
12 12

)
A−1 = 1√

2

(
12 12
−12 12

)
.

The Dirac representation is given by D(eµ) = A−1 ◦ DS(eµ) ◦ A, resulting in the
Dirac matrices in Dirac representation:

γ0 =
(
1C2 0
0 −1C2

)
, γj =

(
0 σj
−σj 0

)
.

Whatever the explicit representations of the Dirac matrices, they have in common to
act on ∧(P ) (or ∧(P ∗)). Hence ψ ∈ Γ(R4,

∧(P )), that is, ψ : R4 → ∧(P ).



36 Chapter 3. Dirac equation

Definition 3.2.8.
The states ψ, that the Dirac operator acts on, are called spinor fields. The
representation used for the Dirac matrices gives the kind of spinors, e.g. Dirac
spinors and Weyl spinors.

For the rest of the chapter, we will consider Dirac spinors, if not specified differently.
Furthermore, we denote the Dirac representation also by DS.

Remark 3.2.9.
For Dirac spinors, the matrix representations of β and αj are:

β =
(
1C2 0
0 −1C2

)
, αj =

(
0 σj
σj 0

)
.

To find the transformation behavior of spinors, we consider the general case of maps
f : X → Y , that form a vector space Y X .2 Let G be a group with group actions
DX : G×X → X and DY : G× Y → Y . A representation of G on Y X can be defined
by

D : G→ GL(Y X) , D(g)f = DY (g) ◦ f ◦ DX(g)−1 .

As group representation D defines an action D : G× Y X → Y X . Then one can fix an
element g ∈ G and observe, that the following diagram commutes:

X Y

X Y

f

DX(g) DY (g)

D(g)f

Example 3.2.10.
Let R ∈ SO(3) be a rotation and v : R3 → R3 a vector field. Rotations act
naturally on R3. Vector fields transform under rotations as

(R ◦ v)(x) = Rv(R−1x) .

To adopt the general construction for spionor fields, we recall the spinor representation
DS from section D.3, observing that Spin(R4, g) ⊂ Cl(C4, g), and the homomorphism
ρ : Spin(V,Q)→ SO(V,Q) from subsection D.5.2. Since SO(V,Q) ⊂ GL(V ), ρ is also a
representation.

Definition 3.2.11.
Spinors transform under the spin group Spin(R4, g) as

(D(a)ψ)(v) = DS(a)ψ(ρ(a)−1v) , ∀ a ∈ Spin(R4, g) .

2Additional structure for Y is needed to define a vectors space structure on Y X .
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3.3. Non-relativistic reduction and spin

There does exist a reduction theory for the Dirac equation, that allows to take higher
then linear order effects into account, called Foldy–Wouthuysen transformation. Here
we will only consider the first order approximations derived by physical reasoning, as
they suffice to result in the Pauli equation. The focus here is to give meaning to the
Dirac equation, and how spin arises in a natural way form the theory.

3.3.1. Dirac equation with electro magnetic fields and covariance

The Faraday form F ∈ Ω2(M4) on the Minkowski space M4 = (R4, g) , better known as
antisymmetric field strength tensor, is generated by a potential A ∈ Ω1(M4):

F = dA ⇒ Fµν = ∂µAν − ∂µAν .

The property d2 = 0 gives rise to the gauge invariance under closed 1-forms, that are
also exact on M4. This means, that for all χ ∈ C∞(M) and all F = dA it holds that:

A′ := A+ dχ ⇒ F = dA′ .

The choice of a χ is the choice of a gauge. The theory of electromagnetism is gauge
invariant. From the Schrödinger equation with non-relativistic electromagnetic fields,
we know the gauge transformation ψ → e

i
~χψ. The Dirac equation is supposed to be

gauge invariant. The principle of minimal substitution is the substitution ∂µ → ∂′µ,
such that the equation with ∂′µ becomes gauge invariant. We find that

∂µ →
(
∂µ −

ie

~
Aµ
)

satisfies our needs. The Dirac equation with electro magnetic fields is

γµ
(
∂xµ −

ie

~
Aµ
)
ψ + i

mc

~
ψ = 0 .

Theorem 3.3.1.
Let ψ be a solution of the covariant Dirac equation and a ∈ Spin(R4, g). Then
D(a)ψ is a solution of the covariant Dirac equation

γµ
(
∂xµ −

ie

~
(D(a)A)µ

)
D(a)ψ + i

mc

~
D(a)ψ = 0 ,

with gauge transformed potential:

(D(a)A)ν := Aµ(ρ(a)−1)
(
ρ(a)−1

)µ
ν

Remark 3.3.2.
The gauge transformation law is just the natural transformation of the 1-form A,
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i.e.

D(a)A = D(a) (Aµ(x)dxµ) (x) = Aµ(ρ(a)−1x)d(ρ(a)−1x)µ

= Aµ(ρ(a)−1)
(
ρ(a)−1

)µ
ν
dxν .

Proof 3.3.3.
This proof follows [Zir10, section 2.12].

First, we recall the definition of ρ(a) as ρ(a)x = axa−1, where the left side is in
the spin group. Thus, with γµ as representation of eµ in the spinor representation,
we find:

aeµa
−1 = ρ(a)eµ = (ρ(a))νµ eν

⇒ agτµeµa
−1 = aeτa−1 = gτµ (ρ(a))νµ eν = (ρ(a)) τ

ν eν .

Since ρ : Spin(R4, g) → SO(R4, g) it holds that ρ(a)T = ρ(a)−1, which looks in
Ricci calculus as follows:

(ρ(a)) τ
ν = ((ρ(a))τν)

T = ((ρ(a))τν)
−1 = (ρ(a)−1)τν

⇒ aeτa−1 = (ρ(a)−1)τνeν .
Applying the spinor representation, which by definition is a homomorphism, on
both sides, yields:

DS(a)γτDS(a)−1 = (ρ(a)−1)τνγν

⇔ DS(a)γτ = (ρ(a)−1)τνγν DS(a) .
Starting from the Dirac equation

γµ
(
∂xµ −

ie

~
Aµ(x)

)
ψ(x) + i

mc

~
ψ(x) = 0 ,

we multiply with DS(a) from the left, and use our previous findings:

(ρ(a)−1)µνγν
(
∂xµ −

ie

~
Aµ(x)

)
DS(a)ψ(x) + i

mc

~
DS(a)ψ(x) = 0 .

Next we transform the arguments, using

∂yµ = ∂

∂yµ
= ∂x(y)ν

∂yµ
∂

∂xν
= (ρ(a))νµ

∂

∂xν
,

where y = (ρ(a)−1x and x(y) = ρ(a)y:

0 = (ρ(a)−1)µνγν
(

(ρ(a))λµ∂xλ −
ie

~
Aµ(ρ(a)−1x)

)
DS(a)ψ(ρ(a)−1x)

+ i
mc

~
DS(a)ψ(ρ(a)−1x)

= (ρ(a)−1)µν(ρ(a))λµγν
(
∂xλ −

ie

~
Aµ(ρ(a)−1x) (ρ(a)−1)µν

)
D(a)ψ
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+ i
mc

~
D(a)ψ

= δλν

(
∂xλ −

ie

~
(D(A)A)ν

)
D(a)ψ + i

mc

~
D(a)ψ

=
(
∂xν −

ie

~
(D(A)A)ν

)
D(a)ψ + i

mc

~
D(a)ψ .

Corollary 3.3.4.
If ψ is a solution of the free Dirac equation, so is D(a)ψ.

3.3.2. Continuity equation

Writing out the Dirac equation with electromagnetic fields, in terms of β and α` yields:(
∂t + ie

~
Φ
)
ψ + c

∑
`

(
∂x` −

ie

~
A`
)
α`ψ + i

mc2

~
βψ = 0 . (3.4)

For the spinors, we have chosen a basis of ∧(P ) ' C4, which allows to construct a
hermitian scalar product (·, ·) : C4 × C4 → C. We assume, that this hermitian scalar
product has a meaning beyond its construction here.
The scalar product allows to define dual spinors ψ† ∈ (C4)∗ by ψ† = (ψ, ·). The

hermitian adjoint matrices β† and α†l are defined as always. A short calculation reveals
β and α` to be hermitian. The adjoint equation thus is

(
∂t −

ie

~
Φ
)
ψ† + c

∑
`

(
∂x` + ie

~
A`
)
ψ†α` +−imc

2

~
ψ†β = 0 . (3.5)

Calculating the term ψ†(3.4) + (3.5)ψ, results in a continuity equation:

∂tψ
†ψ︸︷︷︸

=ρ

+
∑
`

∂x`cψ
†α`ψ︸ ︷︷ ︸
=j`

= 0 ⇒ ∂tρ+∇ ·~j = 0 .

3.3.3. Non-relativistic limit and Pauli equation

As is the case for any generalization of a theory in physics, the former should be a
limit case. In this case, the Schrödinger equation has to be recovered from the Dirac
equation in the non-relativistic limit. Since we may choose A = 0 at any point, we will
use this opportunity to discover a first order correction for the Schrödinger equation,
the so called Pauli equation.
Writing the Dirac equation with electro magnetic fields in matrix form, we get

0 =

( i~mc+ 1
c
∂t − ie

~A0)12
∑
j(σj∂xj − ie

~Aj)

−∑j σj(∂xj − ie
~Aj) ( i~mc−

1
c
∂t + ie

~A0)12


ψ+

ψ−

 with ψ± =

ψ±,↑
ψ±,↓

 .
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To shorten the notation, we write

0 =
(
Â B̂

Ĉ D̂

)(
ψ+
ψ−

)
⇒ 0 = Âψ+ + B̂ψ−

0 = Ĉψ+ + D̂ψ−
.

Assuming that D̂ is invertible, or an inversion can be approximated in the non-relativistic
limit, we may write

ψ− = −D̂−1Ĉψ+ ⇒ (A− B̂D̂−1Ĉ)ψ+ = 0 . (3.6)

The non-relativistic limit for weak fields is characterized by the fact, that mc2 � e
~A0.

For that reason, the main contribution to the time evolution is determined by

0 =
(

( i~mc+ 1
c
∂t)12 0

0 ( i~mc−
1
c
∂t)12

)(
ψ+
ψ−

)
⇒ ψ(0) ∼ e−i

mc2
~ t .

With this contribution, we can approximate D̂−1. Using −1
c
∂tψ ≈ imc2

~ ψ, we find

D̂ψ+ ≈
2imc2

~
ψ+ −→ D̂−1 ≈ ~

2imc212 .

Using {σj, σk} = 2δjk1 and [σj, σk] = 2i∑` εjk`σ`, the operator B̂Ĉ can be calculated:

B̂Ĉψ =
∑

j

σj

(
∂xj −

ie

~
Aj
)(∑

k

σk

(
∂xk −

ie

~
Ak
))

ψ

=
∑
jk

(
∂xjσjσk

(
∂xk −

ie

~
Ak
)
− ie

~
Ajσjσk

(
∂xk −

ie

~
Ak
))

ψ

=
∑
jk

σjσk

(
∂xj∂xk −

ie

~
∂xjAk −

ie

~
Aj∂xk +

(
ie

~

)2
AjAk

)
ψ

= 2
∑
j

(
∂xj∂xj −

ie

~
∂xjAj −

ie

~
Aj∂xj +

(
ie

~

)2
A2
j

)
ψ

−
∑

j 6=k,k 6=j
σjσk

(
ie

~
∂xjAk + ie

~
Aj∂xk

)
ψ

= 2
∑
j

(
∂xj −

ie

~
Aj
)2
ψ − ie

~
∑

j 6=k,k 6=j
σjσk

(
∂xjAk

)
ψ

−
∑

j 6=k,k 6=j
σjσk

(
ie

~
Ak∂xj + ie

~
Aj∂xk

)
︸ ︷︷ ︸

=0

ψ

= 2
∑
j

(
∂xj −

ie

~
Aj
)2
ψ + e

~
∑
j,k,`

εjk`σ`
(
∂xjAk

)
ψ

=
2

∑
j

(
∂xj −

e

~
Aj
)2

1 + 2
∑
`

σ`B`

ψ .



3.4. Total angular momentum 41

Since D̂−1 is proportional to 12, it commutes with B̂. Inserting the operators D̂−1 and
B̂Ĉ in (3.6) results in the Pauli equation with energy shift mc2:

i~∂tψ+ = (mc2 + eΦ)ψ+ −
~2

2m
∑
j

(
∂xj −

ie

~
Aj
)2
ψ+ −

e~
2m

∑
`

σ`B`ψ+ .

Here, B` are the components of the magnetic field and Φ = −cA0 is the electrical
potential.

3.3.4. Spin

The Pauli equation has an additional contribution to the energy, of the form e~
2m
∑
` σ`B`.

In classical mechanics, a charged particle, moving on a circular orbit, creates a magnetic
moment of the form ~µ = e

2m
~L. In a magnetic field, the potential energy is E = − ~B · ~µ.

For that reason, σj could be considered as component of some intrinsic rotation. However,
the commutator relations have an additional factor 2, that needs to be fixed, in order
to understand the energy contribution as something related to angular momentum
(compare theorem B.3.2). This has the following consequences:

• There is an intrinsic pseudo rotation3, called Spin with the operator Sj = ~
2σj.

• The additional factor 1
2 needs a gyromagnetic factor g = 2, such that µj = g e

2mSj .

That spin is no classical rotation can be understand, apart from its mathematical origin,
from the gyromagnetic factor g = 2, that does not fit classical electrodynamics.
For Dirac spinors, the spin operator is defined by

Sj = ~
2

(
σj 0
0 σj

)
.

The appearance of spin 1
2 shows, that the Dirac equation describes only spin 1

2 particles.

3.4. Total angular momentum

The Dirac equation gives rise to a new quantity, called spin. In the non-relativistic
reduction, new terms appeared, that we interpreted as some kind of intrinsic angular
momentum. In fact, this point of view is not only an assumption by comparison to
classical physics, but has a mathematical foundation. The total angular momentum
is the generator of spatial rotations of spinors. To see, how such a generator acts on
spinors, we choose X ∈ spin(R4, g), such that exp(tX) ∈ Spin(R3) ⊂ Spin(R4, g).

Lemma 3.4.1.
Let J` = −∑j,k ε`jkej ⊗ ϑek for `, j, k ∈ {1, 2, 3}, where {ϑ`} is the dual basis of

3It cannot be a proper rotation, since the Pauli matrices generate the SU(2) and not SO(3).
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{e`}. Then it holds that

τ(Σ`) = 2iJ` , where DS(Σ`) =
(
σ` 0
0 σ`

)
.

Proof 3.4.2.
Using [σj, σk] = 2i∑` εjk`σ`, we find

ε`jkDS(Σ`) = i

2[γj, γk] .

Hence, in the Clifford algebra it holds that

Σ` = i

2ε`jk[ej, ek] .

From proof D.5.10, we read of (Q(ei, ej) = −δij), that [[ej, ek], en] = −4(δknej −
δjnek). Plugging in yields:

τ(Σ`)en = [Σ`, en] = −2i(δknej − δjnek) , for ε`jk = 1 .

A direct calculation shows, that

J`en = −δknej + δjnek , for ε`jk = 1 .

Thus:
τ(Σ`) = 2iJ` .

We have already met the representation of elements g ∈ Spin(R4, g) on spinors:

(D(g)ψ)(v) = DS(g)ψ(ρ(g)−1v) .

To find a representation for X ∈ spin(R4, g) ' so(R4, g), we use theorem D.1.14.

Theorem 3.4.3.
Let X ∈ spin(R4, g), such that so(3) 3 τ(X) = ∑

` c`J`, where J` are the genera-
tors from the previous lemma, then it holds that

d

dt

∣∣∣∣∣
t=0
D(etX)ψ = d

dt

∣∣∣∣∣
t=0
DS(etX) ◦ ψ ◦ ρ(e−tX) = − i

~
∑
`

c`(L` + S`)ψ .

Proof 3.4.4.
The second equation is a generalization of corollary D.1.18:

d

dt

∣∣∣∣∣
t=0

ψ ◦ ρ(e−tX) = Dψ ◦ d

dt

∣∣∣∣∣
t=0

ρ(e−tX) .
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Using ρ(e−tX)v = e−tτ(X)v we find:4

d

dt

∣∣∣∣∣
t=0

ψ ◦ ρ(e−tX) = −Dψ ◦ τ(X) .

By assumption, we have τ(X) = ∑
` c`J`. For the same reason as in the proof of

that corollary (Dψ = ∑
j ∂jψdx

j), we get

d

dt

∣∣∣∣∣
t=0

ψ ◦ ρ(e−tX) = 1
i~
∑
`

c`L`ψ = − i
~
∑
`

c`L`ψ ,

with L` = −i~∑j,k ε`jkxj∂k. Using, that DS is an algebra representation, and thus
DS(etX) = etDS(X):

d

dt

∣∣∣∣∣
t=0
DS(etX) ◦ ψ = d

dt

∣∣∣∣∣
t=0

etDS(X) ◦ ψ = DS(X) ◦ ψ .

Since τ(X) = ∑
` c`J`, which is equivalent to X = ∑

` c`τ
−1(J`). The last lemma

tells us, that τ−1(J`) = − i
2Σ`. Plugging in, and using the spin operator S` =

~
2DS(Σ`) yields:

d

dt

∣∣∣∣∣
t=0
DS(etX) ◦ ψ = DS(X) ◦ ψ = − i

~
∑
`

S` ◦ ψ .

In total, using the product and chain rule, we get

d

dt

∣∣∣∣∣
t=0
DS(etX) ◦ ψ ◦ ρ(e−tX)−1 = − i

~
∑
`

c`(L` + S`) .

As a result of the last theorem, we know that L` + S` generate rotations of spinors. We
define:

Definition 3.4.5.
The total angular momentum operator is defined by J` = L` + S`.

3.5. Problems of the Dirac theory

Although the Dirac equation looks promising at first sight, the problems of the Klein-
Gordon equation still exist.

4Similarly we could have calculated d
dt

∣∣
t=0 ρ(e

−tX)v = d
dt

∣∣
t=0 e

−tXvetX = −Xv + vX = −[X, v] =
−τ(X)v.
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3.5.1. Solution of the free Dirac equation

To solve the free Dirac equation (for β and αj), the plane wave ansatz ψ(t, ~x) =
e−

i
~ (Ept−~p·~x)u with u ∈ C4 is used. This results in the following eigen value equation:

Ep

(
u+
u−

)
=
(
mc2

12 c
∑
j σjpj

c
∑
j σjpj −mc2

12

)(
u+
u−

)
.

In the case of zero momentum, the Dirac Hamiltonian has the two eigen values E0 =
±mc2. In general, it holds that (using the shorthand ∑j σjpj = ~σ · ~p):

(Ep −mc2)u+ − c(~σ · ~p)u− = 0
(Ep +mc2)u− − c(~σ · ~p)u+ = 0 .

p

Ep

mc2

−mc2

Figure 3.1.: Energy spectrum of the free Dirac Hamiltonian.

Plugging the second equation, which reads u− = c(~σ·~p)
Ep+mc2u+, into the first equation

results in
(Ep −mc2)(Ep +mc2)u+ − c2(~σ · ~p)2u+ = 0 .

A matrix calculation shows (~σ · ~p)2 = p2, such that

Ep = ±
√
p2c2 +m2c4 .

We see, that the free Hamiltonian is neither bound from above nor from below. Unbound
operators are no rare thing in quantum mechanics. Yet, having no lower bound poses
a drastic problem. The absence of a lower bound means, that there is no ground
state. This could lead to infinite transition in lower states, allowing to pull an infinite
energy out of nothing, in the presence of strong electromagnetic fields, which certainly
contradicts all observations.
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3.5.2. Conclusion

Further investigation of the Dirac theory that we have introduced so far, reveals, that
while there is a continuity equation, scattering allows for larger than unity reflections,
hinting at two adaptions to be made. The continuity equation does not hold for
probability densities, but for charge densities and the Dirac theory is not a single
particle theory, but a many particle theory. This attempt, a modern version of the
famous concept of the “Dirac sea”, leads to quantum field theory.



4
Stable second quantization for the
Dirac theory
As mentioned in section 3.5, the Dirac theory still poses serious problems. As hinted at in the
conclusion, the modern interpretation of the Dirac theory is a many particle formulation that allows
to fix the negative spectrum and will result in a field theory. To arrive at the modern formulation
from the perspective of a many particle theory, this section follows [Zir10, Sections 3.6.3 ff.] and
[Zir14].

4.1. The Dirac sea and normal ordering

To fix the problem of an unbound negative spectrum, Dirac utilized the Pauli exclusion
principle, and effectively reduced the Dirac theory to fermions. His idea was to interpret
the vacuum as “sea” of electrons, i.e. all negative energy states being occupied by an
electron. Thus, there can be no transitions of electrons into the negative spectrum,
since all these states are Pauli blocked. Still, there is the possibility for the sea electrons
to be promoted to real electrons, leaving a hole in the sea, that would be perceived as
negative electron, today better known as positron.

E−mc2 +mc20

(e−, e+)-creation

Figure 4.1.: Creation of a particle-hole pair in the Dirac sea picture. (See [Zir10, 3.6.3 The idea of
hole theory.])

To sketch, how this idea can be realized, we pass to the simplest case, i.e. H ' C
and thus H = h ∈ R. Then there is one pair of creation/annihilation operators (c†, c)
and H = hc†c. If h < 0, the operator is negative and the naive vacuum |0〉 has to be
changed, i.e. |vac〉 = c†|0〉. Also the second quantized operator has to be adapted to

Ĥ = h(c†c− 1) ,

such that Ĥ|vac〉 = 0.
In modern physics, the concept of the Dirac theory has been replaced by QFT. There

might be more elaborate properties of the Dirac see, that have not been validated by
experiment. Yet even in the early days of the theory, it was criticized several times. It
is a great leap of faith to assume an infinite amount of charge and energy to define the
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vacuum state, that is not symmetric in the positive and negative spectrum despite a so
far symmetric theory.

However, there is an equivalent way to fix the negative spectrum, without changing
the vacuum state. In the previous case, the operator c† acts as annihilation operator
and c as creation operator on the new vacuum:

c†|vac〉 = c†(c†|0〉) = 0 and c|vac〉 = cc†|0〉 = |0〉 6= 0 .

So we define c† = b and c = b†. Also, we had to exchange c†c by c†c−1 in the expression
for Ĥ. Hence:

Ĥ = h(bb† − 1) = h((1− b†b)− 1) = −hb†b .
By construction, Ĥ|0〉 = 0 and Ĥb†|0〉 = −h|0〉, so Ĥ > 0.

Definition 4.1.1.
The process of normal ordering : O : of an expression O is the reordering of
operators, such that the creation operators are further left than the annihilation
operators. For bosons a and fermions c normal ordering has the following rules:

i) :a†iaj: = a†iaj and :c†icj: = c†icj.

ii) :aia†j: = a†jai and :cic†j: = −c†jci.

iii) creation operators /annihilation operators change positions among themselves
as usual (ccr- and car-relations).

iv) normal ordering is extended linearly.

With the concept of normal ordering, the construction of Ĥ can be realized as :H:.
Choosing a polarization, such that creation and annihilation operators exchange their
roles on the negative spectrum, i.e. H−, then:

:H−: = :hbb†: = −hb†b = Ĥ .

4.2. Stable second quantization

Let H be a Hilbert space and H ∈ End(H) with neither lower nor upper boundary for
its spectrum and no zero eigenvalue, e.g. the Dirac operator. Also assume the existence
of eigen states that define a Hilbert basis. Instead of choosing the natural polarization
H ⊕ H∗, we are looking for a subspace P ⊂ H ⊕ H∗, such that the normal ordered
second quantized operator :H: is non-negative with respect to that polarization.
By the choice of H, there are orthogonal projections Π+ and Π−, with

H = H+ ⊕H− , with H± = Π±H .

Let |h+
j 〉 be the eigen states to positive eigen values and |h−j 〉 those to negative eigen

values, then Π+± can be written explicitly:

Π± =
∑
j

|h±j 〉〈h±j | .
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In other words, the Hilbert space has been decomposed into two orthogonal subspaces,
one consisting of positive eigen states and their linear combinations, and one consisting
of negative eigen states and their linear combinations.

Lemma 4.2.1.
Define H± := Π±HΠ±, then it holds that:

H = H+ +H− .

Proof 4.2.2.
Let h±j be the eigen value to |h±j 〉, then H can be written as follows:

H =
∑
j

h+
j |h+

j 〉〈h+
j | +

∑
j

h−j |h−j 〉〈h−j | .

Since 〈h+
j |h−k 〉 = 0 for all j, k we find for H+:

H+ = Π+HΠ+ =
∑
j,k,`

h+
j |h+

k 〉〈h+
k |h+

j 〉〈h+
j |h+

` 〉〈h+
` |

=
∑
j,k,`

h+
j δjkδj`|h+

k 〉〈h+
` | =

∑
j

h+
j |h+

j 〉〈h+
j | .

In the same way:
H− =

∑
j

h−j |h−j 〉〈h−j | ,

which proves the claim.

Definition 4.2.3.
The stable second quantization is the second quantization with respect to
the polarization

P = H+ ⊕H∗− , P ∗ = H∗+ ⊕H− .

The corresponding ferminoic Fock space is ∧(P ).

Remembering remark 2.4.8, the second quantized operator H equals the representation
of the corresponding Clifford algebra element HC . For that reason, it is worthwhile
to look at the representation again. Let |e±i 〉 be Hilbert bases of H± and 〈e±i | the
corresponding dual bases of H∗±. Further, let |v+〉 ∈ H+ and 〈w−| ∈ H∗−, then the
representation DP works as follows:

DP (|e+
j 〉)

(
|v+〉+ 〈w−|

)
= |e+

j 〉 ∧ |v+〉+ |e+
j 〉 ∧ 〈w−| ,

DP (〈e+
k |)

(
|v+〉+ 〈w−|

)
= Q

(
〈e+
k |, |v+〉+ 〈w−|

)
= 〈e+

k |v+〉+ 0 .

Similar rules apply to DP (〈e−k |) and DP (|e−j 〉).



4.2. Stable second quantization 49

DP (〈e−j |)
(
|v+〉+ 〈w−|

)
= 〈e−j | ∧ |v+〉+ 〈e−j | ∧ 〈w−| ,

DP (|e−k 〉)
(
|v+〉+ 〈w−|

)
= Q

(
|e−k 〉, |v+〉+ 〈w−|

)
= 0 + 〈w−|e−j 〉 .

It can be observed, that elements in P = H+ ⊕ H∗− still create and elements in
P ∗ = H∗+ ⊕H− still annihilate. Also annihilation is again generalized as anti-derivative
to ∧(P ). To keep the notation short, we adopt the creation-/annihilation operator
notation:

DP (|e+
j 〉) ≡ c†+,j , DP (〈e+

j |) ≡ c+,j , DP (〈e−j |) ≡ c†−,j , DP (|e−k 〉) ≡ c−,j .

Thus, the Clifford algebra form of H is:

H = H+ +H− =
∑
j,k

|e+
j 〉〈e+

j |H+|e+
k 〉〈e+

k |+
∑
j,k

|e−j 〉〈e−j |H−|e−k 〉〈e−k |

≡
∑
j,k

(H+)jk|e+
j 〉〈e+

k |+
∑
j,k

(H−)jk|e−j 〉〈e−k |

⇒ HC =
∑
j,k

(H+)jk|e+
j 〉 ◦ 〈e+

k |+
∑
j,k

(H−)jk|e−j 〉 ◦ 〈e−k |

⇒ DP (HC) =
∑
j,k

(H+)jk c†+,jc+,k +
∑
j,k

(H−)jk c−,jc†−,k

The normal ordered second quantized operator is:

:H: = :DP
(
HC

)
: =

∑
j,k

(H+)jk c†+,jc+,k −
∑
j,k

(H−)jk c†−,kc−,j .

Remark 4.2.4.
Since normal ordering has the prerequisite of second quantization (here), we will
drop the special notation for second quantization and only write :H:

Lemma 4.2.5.
The operator :H: is a derivation on ∧(P ).

Proof 4.2.6.
The first step is to observe, that the pair of creation and annihilation operators
(c†±,jc±,k) is a derivation on ∧(P ). To see that, let v ∈ P and ξ ∈ ∧(P ), then:

c†+,jc+,k(v ∧ ξ) = c†+,j ((c+,kv) ∧ ξ − v ∧ c+,kξ)
= (c†+,jc+,kv) ∧ ξc†+,j(v ∧ c+,kξ)
= (c†+,jc+,kv) ∧ ξ + v ∧ (c†+,jc+,kξ) .

The same holds true for c†−,jc−,k, which proves the claim by linearity.
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Theorem 4.2.7.
The operator :H: is a positive on ∧(P ).

Proof 4.2.8.
The operator :H: is a derivation on ∧(P ). Hence it is enough to show positivity on
P = H+⊕H∗−. On H+ the operator :H: acts as H+, which is positive by definition
and on H∗− it acts as −H t

−, being also positive, because of the minus sign.

4.3. Stable second quantization of the
Dirac Hamiltonian

To apply the stable second quantization to the free Dirac Hamiltonian, which does not
have a discrete spectrum, we understand the meaning of eigen vectore more liberally,
and ignore mathematical subtleties. Also, for simplicity we follow [Zir10], that is, we
fix an inertial frame and set t = 0, not using the relativistic invariance.
In this case, the single particle Hilbert space H is the space of spinor fields. Since

we will chosen a basis anyway, this space is (not canonnically) isomorphic to H ∼=
L2(R3) ⊗ C4. Thus, H becomes a matrix (Hτε). In the momentum space, for fixed
k, the Dirac equation does not contain any derivatives and becomes a usual matrix
equation.

H(k)ψ(k) =
(

mc2 ~c∑j σjkj
~c∑j σjkj −mc2

)
ψ(k) = E(k)ψ(k) .

The square of H(k) is (~ω(k))2
1, where

~ω(k) =
√
m2c4 + ~2k2c2 ,

i.e. the energy momentum relation. Then it follows that:

H(k)2ψ(k) = (~ω(k))2ψ(k) = E(k) H(k)ψ(k) = E(k)2ψ(k) .

This means, the eigen values are ±~ω(k). For the two eigen values, we define eigen
states:

H(k)us(k) = +~ω(k) us(k) and H(k)vs(k) = −~ω(k) vs(k) ,

where the index s ∈ {+,−} denotes the two-fold spin degeneracy for each eigen value.
Here we follow [Zir14] and choose the non-conventional but simpler normalization
conditions:

u†s(k)us′(k) = δss′ = v†s(k)vs′(k) and u†s(k)vs′(k) = 0 .

The hermitian adjoint is to be understood as the adjoint with respect to the hermitian
structure of C4, defining a bijection to the dual space. For the spin degeneracy a
common choice is, that s denotes the helecity, i.e. the eigen value with respect to the
operator (see lemma 3.4.1) 1

|k|
∑
`DS(Σ`)k`.
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By the choice of the eigen states, and with the isomorphism between linear maps and
tensors, we can write Π±(k) explicitly:

Π+(k) =
∑
s

us(k)⊗ u†s(k) and Π−(k) =
∑
s

vs(k)⊗ v†s(k) ,

⇒ 1 =
∑
s

us(k)⊗ u†s(k) +
∑
s

vs(k)⊗ v†s(k) . (4.1)

The procedure of stable second quantization now proceeds by turning these operators
into the corresponding Clifford algebra elements and to represent them as operators on
the exterior algebra. To be more transparent, we reiterate the steps:

1. First, we define the positive /negative subspaces H± = Π±H, and choose the
Fockspace ∧(H+ ⊕H∗−).

2. The choice of eigen states for H(k) defines a basis for fixed k such that we define
for the positive subspace:

c†+,s(k) ≡ DP (us(k)) and c+,s(k) ≡ DP (u†s(k)) .

Here, there is no mistake in the positions of †, since u† is an element of the dual
space and thus corresponds to annihilation.

3. In the stable second quantization, the Hamilton operator acts as −H t on the
negative subspace, which fixes the negative spectrum. However, then DP (v†s(k))
creates a particle with negative momentum −k since p→ −pt. Furthermore, the
created particle has also the helecity −s for the same reason. To keep the notation
meaningful, we have to define:

c†−,s(k) ≡ DP (v†−s(−k)) and c−,s(k) ≡ DP (v−s(−k)) .

4. The Hamilton operator for fixed k is:

:H(k): = ~ω(k) · Π+(k) + (−~ω(k)) · Π−(k) = ~ω(k)(Π+(k)− Π−(k) .

Applying the the stable second quantization and summing/integrating over the
momentum space with measure dk3

(2π)3 yields:

:H: =
∫ dk3

(2π)3 ~ω(k)
∑
s

(
c†+,s(k)c+,s(k) + c†−,−s(−k)c−,−s(−k)

)
=
∫ dk3

(2π)3 ~ω(k)
∑
s

c†+,s(k)c+,s(k)

+
∫ dk3

(2π)3 ~ω(k)
∑
s

c†−,−s(−k)c−,−s(−k)

=
∫ dk3

(2π)3 ~ω(k)
∑
s

(
c†+,s(k)c+,s(k) + c†−,s(k)c−,s(k)

)
.

In the last equality we used, that we sum over all s and integrate over all k, where
ω(k) = ω(−k) allowing to ignore the minus sign. 1

1Œ in one dimension:∫ ∞
−∞

dk ω(k)f(−k) =
∫ −∞
∞

d(−k) ω(−k)f(k) = −
∫ ∞
−∞

d(−k) ω(−k)f(k)
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Lemma 4.3.1.
The electron/positron creation /annihilation operators c†±,s(k) and
c±,s(k) satisfy the following anti-commutator relations:

{cα,s(k), c†β,s′(k′)} = (2π)3δαβδss′δ(k − k′) ,

{c†α,s(k), c†β,s′(k′)} = 0 = {cα,s(k), cβ,s′(k′)} .

Proof 4.3.2.
The operators c†±,s(k) and c±,s(k) have a momentum dependence. Let c†±,s(x) and
c±,s(x) be the corresponding position dependent operators, related by Fourier
transformation:

c±,s(k) =
∫
dx3 e−ikxc±,s(x) and c†±,s(k) =

∫
dx3 eikxc†±,s(x) .

The operator fields have to satisfy the canonical field anti-commutator relations
(as used in canonical quantizations):

{cα,s(x), c†β,s′(x′)} = δss′δαβδ(x− x′) ,

{c†α,s(x), c†β,s′(x′)} = 0 = {cα,s(x), cβ,s′(x′)} .

The Kronecker-deltas δss′ and δαβ are motivated by theorem D.4.4 and the fact,
that different indices correspond to different “elements” in the Hilbert space.

Hence, using lemma F.3.4 in the integral kernel notation together with quantum
mechanical Fourier normalization:

{c±,s(k), c†±,s′(k′)} =
∫
dx3

∫
dy3 e−ikxeik

′y{c±,s(x), c†±,s′(y)}

= δss′
∫
dx3

∫
dy3 e−ikxeik

′yδ(x− y)

= δss′
∫
dx3 eix(k′−k) = (2π)3δss′δ(k − k′) .

The remaining anti-commutator relations can be shown in the same way.

4.4. Dirac field

So far, we have only found an expression for the Hamiltonian, that fixes the issues of
the one particle Dirac theory. One could try to apply the stable second quantization for
other operators, trying to find mutual compatible splittings H = H+ ⊕H−. Yet, since
a modern description is a field theoretic description anyway, we will adopt a concept

= −
∫ ∞
−∞
−dk ω(k)f(k) =

∫ ∞
−∞

dk ω(k)f(k) .
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called field operator. Here we introduce it from the perspective of second quantization,
rather then canonical quantization (since it yields the same result in this case).
Let |j〉 be a proper Hilbert basis, |x〉 and |y〉 be position states respectively, then,

using the pseudo completeness relations:

H =
∑
k,j

|j〉〈j|H|k〉〈k|  H =
∑
j,k

〈j|H|k〉c†jck

H =
∑
j,k

〈j|H|k〉c†jck =
∫
dx3

∫
dy3 ∑

j,k

〈j|y〉〈y|H|x〉〈x|k〉c†jck

=
∫
dx3

∫
dy3 〈y|H|x〉

∑
j

c†j〈j|y〉

(∑
k

〈x|k〉ck
)

≡
∫
dx3

∫
dy3 〈y|H|x〉Ψ†(y)Ψ(x) .

Definition 4.4.1.
The field operators are defined by

Ψ†(x) =
∑
j

c†j〈j|x〉 and Ψ(x) =
∑
j

〈x|j〉cj ,

where {|j〉} is a Hilbert basis of the single particle Hilbert space and c†j, cj are
the corresponding bosonic/fermionic creation and annihilation operators.

With definition E.2.2, the formula for the second quantized operator can be simplified:

H =
∫
dx3

∫
dy3 Ψ†(y)〈y|H|x〉Ψ(x) =

∫
dx3

∫
dy3 Ψ†(y)〈y|x〉HΨ(x)

=
∫
dx3

∫
dy3 Ψ†(y)δ(x− y)HΨ(x) =

∫
dx3Ψ†(x)HΨ(x) ,

where H acts on Ψ(x) by its representation on L2(Rn).

Lemma 4.4.2.
The Field operators satisfy the following (anti)-commutation relations:

[Ψ†(x),Ψ†(y)]± = 0 , [Ψ(x),Ψ(y)]± = 0

and [Ψ(x),Ψ†(y)]± = δ(x− y) .

Proof 4.4.3.
This statement seems simple enough. Yet, to exchange the order of sums, it is
necessary to show, that the limits behind the infinite sums are continuous with
respect to a norm/topology, we are yet to choose. Here we do assume this to be
true.

[Ψ(x),Ψ(y)]± =
∑
j,k

〈x|j〉〈y|k〉[cj, ck]± =
∑
j,k

〈x|j〉〈y|k〉 · 0 = 0 .
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The same calculation holds for [Ψ†(x),Ψ†(y)]±. For the last relation, we are sloppy
again, using 〈x|y〉 = δ(x− y):

[Ψ(x),Ψ†(y)]± =
∑
j,k

〈x|j〉〈k|y〉[cj, c†k]± =
∑
j,k

〈x|j〉〈k|y〉δjk

=
∑
j

〈x|j〉〈j|y〉 = 〈x|y〉 = δ(x− y) .

Since we have already used the pseudo-completeness relations, we may as well drop the
condition of proper Hilbert basis and define

Ψ(x) =
∫ dk3

(2π)3 〈x|k〉c(k) .

With (anti)-commutation relations for the creation/annihilation operators using Delta
functions instead of Kronecker deltas, as in lemma 4.3.1. The properties for the Field
operators presented so far stay the same, as can be checked by similar calculations,
using the pseudo completeness relations instead of the proper completeness relations.
For the Dirac field we make the ansatz by a mode expansion of positive/negative

energy states Ψ(x) = Ψ+(x) + Ψ−(x):

Ψ+(x) =
∫ dk3

(2π)3 e
ikx
∑
s

us(k)c+,s(k)

Ψ−(x) =
∫ dk3

(2π)3 e
ikx
∑
s

vs(k)c†−,−s(−k) .

The peculiar choice of c†−,−s(k) is because we already know the meaning of creation/
annihilation operators from the stable second quantization (c+,s(k) ≡ DP (u†s(k)) and
c†−,s(k) ≡ DP (v†−s(−k))).

Definition 4.4.4.
The Dirac field is defined by

Ψ(x) =
∫ dk3

(2π)3 e
ikx
∑
s

(
us(k)c+,s(k) + vs(k)c†−,−s(−k)

)
.

Choosing different spinors us(k) and vs(k), the Dirac field might need different normal-
ization factors, such that one obtains the anti commutation relations form the next
lemma.

Remark 4.4.5.
In quantum field theory, using the canonical quantizations explained in chapter 5,
one obtains the same field operators (after applying Dirac’s hole theory). Using
Noether’s theorem, one obtains the same expressions for the momentum and
charge operators. In this case, the energy-momentum tensor and U(1)-phase
symmetry for charge are used.
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For completeness, it should be mentioned, that in the process of canonical quan-
tization one obtains different creation/annihilation operators, whose physical
meaning has to be deduced.

Lemma 4.4.6.
The Dirac field satisfies the canonical field anti commutator relations:

{Ψ†α(x),Ψ†β(y)} = 0 , {Ψα(x),Ψβ(y)} = 0

and {Ψα(x),Ψ†β(y)} = δαβ δ(x− y) .

Proof 4.4.7.
First calculate Ψ†(x):

Ψ†(x) =
∫ dk3

(2π)3 e
−ikx∑

s

(
c†+,s(k)u†s(k) + c−,−s(−k)v†s(k)

)
.

To avoid an overload of notation we write uα(s, k) instead of (us(k))α. Then, with
lemma 4.3.1 we find:{(

uα(s, k)c+,s(k) + vα(s, k)c†−,−s(−k)
)
,(

c†+,r(`)u†β(r, `) + ei`yc−,−r(−`)v†β(r, `)
)}

=
{
uα(s, k)c+,s(k), c†+,r(`)u†β(r, `)

}
+
{
vα(s, k)c†−,−s(−k), c−,−r(−`)v†β(r, `)

}
+ 0

= uα(s, k)u†β(r, `)
{
c+,s(k), c†+,r(`)

}
+ vα(s, k)v†β(r, `)

{
c†−,−s(−k), c−,−r(−`)

}
=
(
uα(s, k)u†β(r, `) + vα(s, k)v†β(r, `)

)
δrsδ(k − `)

Finally plugging in and using (4.1), which reads∑
s uα(s, k)u†β(s, k) + vα(s, k)v†β(s, k) = δαβ :

{Ψα(x),Ψ†β(y)} =
∫ dk3

(2π)3

∫ d`3

(2π)3 e
ikxe−i`y

∑
r,s

{(
uα(s, k)c+,s(k) + vα(s, k)c†−,−s(−k)

)
,(

c†+,r(`)u†β(r, `) + c−,−r(−`)v†β(r, `)
)}

=
∫ dk3

(2π)3

∫ d`3

(2π)3 e
ikxe−i`y

∑
r,s

(
uα(s, k)u†β(r, `)

+vα(s, k)v†β(r, `)
)
δrsδ(k − `)

=
∫ dk3

(2π)3 e
ikxe−iky

∑
s

uα(s, k)u†β(s, k) + vα(s, k)v†β(s, k)

= δαβ

∫ dk3

(2π)3 e
ik(x−y) = δαβ δ(x− y) .
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The remaining anti-commutator relations can be shown in the same way.

Theorem 4.4.8.
Let H be the Dirac Hamiltonian, then the stable second quantized Hamiltonian
:H: is given by:

:H: = :
∫
dx3Ψ†(x)HΨ(x): .

Proof 4.4.9.
First we need to evaluate HΨ(x). We notice, that H in the position representation
is given by (

mc2 −i~c∑j σj∂xj
−i~c∑j σj∂xj −mc2

)
,

if we use the C4 components. This means:

H eikx
∑
s

(
us(k)c+,s(k) + vs(k)c†−,−s(−k)

)
= eikx

∑
s

H(k)
(
us(k)c+,s(k) + vs(k)c†−,−s(−k)

)
,

where H(k) is the matrix of H in the momentum pace. Thus

HΨ(x) =
∫ dk3

(2π)3 e
ikx~ω(k)

∑
s

(
us(k)c+,s(k)− vs(k)c†−,−s(−k)

)
.

For
∫
dx3Ψ†(x)HΨ(x) we find:

∫
dx3Ψ†(x)HΨ(x) =

∫
dx3

∫ d`3

(2π)3

∫ dk3

(2π)3 e
−i`xeikx~ω(k)∑

r,s

(
c†+,r(`)u†r(`)us(k)c+,s(k)− c−,−r(−`)v†r(`)vs(k)c†−,−s(−k)

− c†+,r(`)u†r(`)vs(k)c†−,−s(−k) + c−,−r(−`)v†r(`)us(k)c+,s(k)
)

=
∫ d`3

(2π)3

∫ dk3

(2π)3

(∫
dx3 ei(k−`)x

)
~ω(k)∑

r,s

(
c†+,r(`)c+,s(k)− c−,−r(−`)c†−,−s(−k)

)
δrs

=
∫ d`3

(2π)3

∫ dk3

(2π)3 (2π)3δ(k − `)~ω(k)∑
s

(
c†+,s(`)c+,s(k)− c−,−s(−`)c†−,−s(−k)

)
=
∫ dk3

(2π)3 ~ω(k)
∑
s

(
c†+,s(`)c+,s(k)− c−,s(k)c†−,s(k)

)
.

(4.2)
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In the last step, we have changed the sign of −k and −s, for the same reason as in
the last subsection. Normal ordering concludes the proof:

:
∫
dx3Ψ†(x)HΨ(x): =

∫ dk3

(2π)3 ~ω(k)
∑
s

(
c†+,s(k)c+,s(k) + c†−,s(k)c−,s(k)

)
= :H: .

With similar calculations, the momentum and charge can be calculated:

:pj: = :
∫
dx Ψ†(x)pjΨ(x): =

∫ dk3

(2π)3 ~kj
∑
s

(
c†+,s(k)c+,s(k) + c†−,s(k)c−,s(k)

)

:Q: = :e ·
∫
dx Ψ†(x)Ψ(x): = e ·

∫ dk3

(2π)3

∑
s

(
c†+,s(k)c+,s(k)− c†−,s(k)c−,s(k)

)

Remark 4.4.10.
The reason for :pj: to have the same sign for electrons c+ and positrons c− is,
that kj unlike ω(k) is not symmetric but anti symmetric. So to go from c−,s(−k)
to c−,s(k) etc. the sign in front changes. For :Q: however, there is nothing of
that sort, such that electrons and positrons have different charge. This is the
reinterpretation of the probability density as charge density.

4.5. Dirac field and time dependence

One way to find the time dependence, one could quantize the covariant Dirac action.
Here we choose the more intuitive way, by splitting the Dirac field in positive and negative
part and adding the corresponding time exponential e− i

~Ekt, where Ek = ±~ω(k), from
the plane wave solutions:

Ψ(x) =
∫ dk3

(2π)3 e
ikx
∑
s

(
us(k)c+,s(k) + vs(k)c†−,−s(−k)

)
=
∫ dk3

(2π)3

∑
s

(
eikxus(k)c+,s(k) + e−ikxvs(−k)c†−,−s(k)

)

 Ψ(x, t) =
∫ dk3

(2π)3

∑
s

(
eikx−iω(k)tus(k)c+,s(k) + e−ikx+iω(k)tvs(−k)c†−,−s(k)

)
.

Next, we use the four-wave-vector k = (ω(k)
c
, k) and the four position x = (ct, x),

together with the Minkowski metric kx = g(k,x) = ω(k)t− kx to find:

Ψ(x) =
∫ dk3

(2π)3

∑
s

(
e−ikxus(k)c+,s(k) + eikxvs(−k)c†−,−s(k)

)
.
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4.6. Relativistic conventions and useful relations

In the last sections, the relativistic covariance of the Dirac theory has not been em-
phasized, to keep the focus on the many particle interpretation. However, as most
textbooks use the relativistic formulation with appropriate conventions (compare for
example [BD94, section 3.1]), it is worthwhile to consider them as well.
To adopt the conventions of [BD94, section 3.1] we follow the remarks of [Zir14,

appendix of the quantization of the Dirac field].

4.6.1. Useful relations of the γ-matrices

Recalling subsection 3.3.2, the hermiticity of β and α` lead to a continuity equation,
that corresponds to charge conservation in the many particle interpretation of the Dirac
theory. The hermiticity so far is a result of the Dirac representation of the γ-matrices
and (3.2) This hermiticity is promoted to an axiom of the theory. For the γ-matrices,
this axiom reads:

(γµ)† = γ0γµγ0 .

Using (3.1), this can be seen as follows:

β = β† =
(
γ0
)†

= γ0γ0γ0 = ββ2 = β ,

(
γj
)†

= (βαj)† = α†jβ
† = αjβ = β2αjβ = β(βαj)β = γ0γjγ0 .

For the trace identities of gamma matrices, that do not depend on the chosen represen-
tation, we introduce a shorthand notation, often used in field theory and relativistic
quantum mechanics:

Definition 4.6.1 (Feynman slash notation).
Let A = (A0, A1, A2, A3) be a family of four objects, then

/A := Aµγ
µ .

Another convention is the definition of γ5:

γ5 := iγ0γ1γ2γ3 .

Remark 4.6.2.
We make the convention here, that with gamma matrices we only mean the original
four γµ.

Corollary 4.6.3.
γ5 has the following properties:

i)
(
γ5
)†

= γ5 ii)
(
γ5
)2

= 1 iii) {γ5, γµ} = 0 .
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Proof 4.6.4.

i) Using (γ0)2 = 1:(
γ5
)†

= −i(γ0)†(γ1)†(γ1)†(γ3)† = −iγ0γ0γ1γ0γ0γ2γ0γ0γ1γ0

= −iγ1γ2γ3γ0 = iγ0γ1γ2γ3 = γ5 .

ii) Using that the gamma matrices anticommute and (γ0)2 = 1, (γj)2 = −1:(
γ5
)2

= −γ0γ1γ2γ3γ0γ1γ2γ3 = −(−1)6(−1)3
1 = 1 .

iii) Since γµγν = −γνγµ for µ 6= ν there are always 3 interchanges, such that

γ5γµ = (−1)3γµγ5 = −γµγ5 .

We conclude this subsection by stating some representation independent identities for
the γ-matrices. Most of the proofs can be found in [BD94, section 7.2].

• γµγµ = gµµ, γµγ
µ = 41, γµ/aγ

µ = −2/a, γµ/a/bγ
µ = 4a · b 1,

γµ/a/b/cγ
µ = −2/c/b/a and γµ/a/b/c/dγ

µ = 2(/d/a/b/c + /c/b/a/d).

• tr(γµ1 . . . γµn) = 0, tr(γ5) = 0 and tr(γ5γµ1 . . . γµn) = 0 for odd n.

• tr(/a/b) = 4a · b 1.

• tr(/a1 . . . /an) =
n∑
j=2

(−1)ja1 · aj tr(/as . . . /̂aj . . . /an).

• tr(γ5/a/b) = 0 and tr(γ5/a/b/c/d) = 4iεαβγδaαbβcγdδ 1.

• tr(/a1/a2 . . . /a2n) = tr(/a2n . . . /a2/a1).

4.6.2. Construction of us(k) and vs(k)
To construct the Dirac field, positive and negative solutions with eigen spinors us and
vs have been used. The k dependence has not been specified up to the convenient
normalization conditions u†s(k)us′(k) = δss′ = v†s(k)vs′(k) and u†s(k)vs′(k) = 0. In the
relativistic version, one constructs the k dependence from the static solution k = 0 by
lorentz boosts, which will give rise to new normalization conditions. We start form the
static situation k = 0 for the relativistic Dirac equation:

(
γ0∂t + imc2

~

)
ψ(x) =


∂t + imc2

~ 0 0 0
0 ∂t + imc2

~ 0 0
0 0 −∂t + imc2

~ 0
0 0 0 −∂t + imc2

~

ψ(x) = 0
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As ususal, the ansatz is ψ(0)
r (x) = wr(0)e−εr imc

2
~ t = wr(0)e−εr imc~ x0 with spinors wr(0),

where we have defined:

εr =
{

1 , r = 1, 2 positive energy solutions
−1 , r = 3, 4 negative energy solutions .

For the positive/negative energy solutions, we choose the spinors (in Dirac representa-
tion):

w1(0) = u+(0) =


1
0
0
0

 , w2(0) = u−(0) =


0
1
0
0

 ,

w3(0) = v+(0) =


0
0
1
0

 , w4(0) = v−(0) =


0
0
0
1

 .

In general, not using the Dirac representation, one demands that
wr(0)†γ0wr′(0) = εrδrr′ .

To define ωr(k) for non-zero k, we consider a general solution ψr(q) = wr(k)e−εrikµxµ(q).
The idea is now, to Lorentz boost the static solution ψ(0)

r (q) to a solution ψr(q). Formally
we consider a Lorentz boost (special Lorentz transformation) L = eX ∈ SO(R4, g), with
X ∈ so(R4, g). From subsection D.5.2 and definition 3.2.11 we know, how Lorentz
transformations act on spinor fields:

D(L)ψ(q) = DS
(
eτ
−1(X)

)
ψ(L−1q) .

From the condition

D(L)ψ(0)
r (q) != wr(k)e−εrikµxµ(q) = wr(k)e−εrikµvµ , (4.3)

we read of the spinors at k 6= 0 (using lemma D.5.13):

wr(k) := DS
(
eτ
−1(X)

)
wr(0) = DS

(
e

1
8Xαβ [eα,eβ ]

)
wr(0) =: S(L)ωr(0) .

Remark 4.6.5.
Comparing the exponentials yields:

mc

~
x0((L−1)µνqν∂µ) = mc

~
(L−1)0

νq
ν = kνq

ν ⇒ (L−1)0
ν = ~

mc
kν .

To calculate DS
(
e

1
8Xαβ [eα,eβ ]

)
explicitly, one would have to express

e
1
8Xαβ [eα,eβ ] in the Clifford basis. However, for the purpose of the textbook normalization,

it is enough to observe, that the exponential map and the representation commute and
thus:

S(L) = DS
(
e

1
8Xαβ [eα,eβ ]

)
= eDS( 1

8Xαβ [eα,eβ ])

= e
1
8Xαβ [DS(eα),DS(eβ)] = e

1
8Xαβ [γα,γβ ] . (4.4)
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Since Xαβ ∈ R, it follows that

S(L)† = e
1
8Xαβ [γα,γβ ]† = e

1
8Xαβ [(γβ)γ ,(γα)γ ] = e

1
8Xαβγ

0[γβ ,γα]γ0

= eγ
0(− 1

8Xαβ [γα,γβ ])γ0 = γ0e−
1
8Xαβ [γα,γβ ]γ0 = γ0S(L)−1γ0 .

To obtain the second line, we have used, that(
γ0[γµ, γν ]γ0

)n
= γ0[γµ, γν ]γ0γ0[γµ, γν ] . . . [γµ, γν ]γ0 = γ0[γµ, γν ]nγ0 .

This result, together with the construction of wr(k) from the already normalized wr(0)
leads to the following normalization:

Lemma 4.6.6.
It holds that

us(k)†γ0us′(k) = δss′ and vs(k)†γ0vs′(k) = −δss′ .

Proof 4.6.7.

wr(k)†γ0wr′(k) = wr(0)†S(L)†γ0S(L)wr′(0) = wr(0)†γ0S(L)−1γ0γ0S(L)wr′(0)
= wr(0)†γ0wr′(0) = εrδrr′ .

This normalization condition is the reason for a notation in the literature, that is easily
confused with complex conjugation:

Definition 4.6.8.
Let ψ be a spinor, then one defines

ψ̄ = ψ†γ0 .

4.6.3. Lorentz boost of spinors

So far, the abstract rules for the action of SO(R4, g) on spinors have been enough to
prove important properties. To find further identities for us(k) and vs(k), an explicit
expression for S(L) is needed. To find such an explicit expression, the generator X of
L has to be found first.

Lemma 4.6.9.
Let L be a Lorentz boost that boosts (mc~ , 0) to (ω(k)

c
, k), where

ω(k) =
√(

mc2

~

)2
+ ‖k‖2c2. Then for

Xµ
ν = θ(k)

‖k‖
∑
i

ki(δ0
νδ
µ
i + δiνδ

µ
0 )
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with θ(k) = cosh−1(ϕ(k)) and ϕ(k) =

√√√√1 +
(
‖k‖~
mc

)2

it holds that

Proof 4.6.10.
First we consider

Y µ
ν = 1

‖k‖
∑
i

ki(δ0
νδ
µ
i + δiνδ

µ
0 ) .

⇒ Y =


0 k1/‖k‖ k2/‖k‖ k3/‖k‖

k1/‖k‖ 0 0 0
k2/‖k‖ 0 0 0
k3/‖k‖ 0 0 0


We calculate:

Y µ
ν Y

ν
λ = 1

‖k‖2

3∑
i,j=1

kikj(δ0
νδ
µ
i + δiνδ

µ
0 )(δ0

λδ
ν
j + δjλδ

ν
0 ) = 1

‖k‖2

∑
i,j

kikj(δijδ
µ
0 δ

0
λδ
j
λδ

µ
i )

= 1
‖k‖2

∑
i,j

(
(ki)2δµ0 δ

0
λ + kikjδµi δ

j
λ

)
= δµ0 δ

0
λ + 1
‖k‖2

∑
i,j

kikjδµi δ
j
λ .

⇒ Y 2 =


1 0 0 0
0 k1k1/‖k‖2 k1k2/‖k‖2 k1k3/‖k‖2

0 k2k1/‖k‖2 k2k2/‖k‖2 k2k3/‖k‖2

0 k3k1/‖k‖2 k3k2/‖k‖2 k3k3/‖k‖2


And also:

Y µ
ν Y

ν
λ Y

λ
α = 1

‖k‖
∑
`

k`
(
δ0
αδ

λ
` + δ`αδ

λ
0

)δµ0 δ0
λ + 1
‖k‖2

∑
i,j

kikjδµi δ
j
λ


= 1
‖k‖

∑
`

k`
(
δµ0 δ

`
α + 1
‖k‖2

∑
i

kik`δ0
αδ

µ
i

)

= 1
‖k‖

∑
`

k`δ`αδ
µ
0 + 1
‖k‖

∑
i

kiδ0
αδ

µ
i

= 1
‖k‖

∑
`

k`(δ0
αδ

µ
` + δ`αδ

µ
0 ) = Y µ

α .

Thus we see that Y 3 = Y or in general:

Y 2n = Y 2 and Y 2n+1 = Y .

It follows that

exp(X) = exp(θY ) =
∑
n∈N0

θnY n

n! = 1 +
∑
n∈2N

θnY n

n! +
∑

n∈2N0+1

θnY n

n!
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= 1 +
∑
n∈N

θ2nY 2n

(2n)! +
∑
n∈N0

θ2n+1Y 2n+1

(2n+ 1)!

= 1 +
∑
n∈N

θ2n

(2n)!Y
2 +

∑
n∈N0

θ2n+1

(2n+ 1)!Y

= (1− Y 2) + cosh(θ)Y 2 + sinh(θ)Y

Now we have to show that exp(X)(mc~ , 0) = (ω(k)
c
, k).

exp(X)
(
mc
~
0

)
=
(

cosh(θ)mc~
ki

‖k‖ sinh(θ)mc~

)
.

For the zeroth component we calculate:

cosh(θ)mc
~

= cosh(cosh−1(ϕ))mc
~

= ϕ
mc

~

= mc

~

√√√√1 +
(
‖k‖~
mc

)2

=
√(

mc

~

)2
+ ‖k‖2 = ω(k)

c

For the i-th component one uses sinh(cosh−1(x)) =
√
x2 − 1 :, to see that

ki

‖k‖
sinh(θ)mc

~
= ki .

Remark 4.6.11.
For further calculations, it is useful to observe that

ϕ(k) = E

mc2 =

√
m2c4 + ~2‖k‖2c2

mc2

Lemma 4.6.12.
Let L,X and θ as in lemma 4.6.9, then it holds that

S(L) := DS(eτ−1(X)) = exp
(
θ

2

∑3
i=1 k

iγ0γi

‖k‖

)
.

Proof 4.6.13.
Becaus of (4.4), it only has to be shown that

1
8Xαβ[γα, γβ] = θ

2

∑
i k

iγ0γi

‖k‖
First we calculate:

(Xαβ) = θ


0 k1/‖k‖ k2/‖k‖ k3/‖k‖

−k1/‖k‖ 0 0 0
−k2/‖k‖ 0 0 0
−k3/‖k‖ 0 0 0


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Then with [γ0, γi] = 2γ0γi

1
8Xαβ[γα, γβ] = θ

8

− 3∑
i=1

ki

‖k‖
[γi, γ0] +

3∑
j=1

kj

‖k‖
[γ0, γj]


= 2θ

8

3∑
i=1

ki

‖k‖
[γ0, γi] = θ

2

∑3
i=1 k

iγ0γi

‖k‖
.

Theorem 4.6.14.
It holds that

S(L) =
√
E +mc2

2mc2

(
1 + ~c

E +mc2

(∑
i

kiγ0γi
))

.

Proof 4.6.15.
First we calculate (∑i k

iγ0γi)n. Using γiγj = −γjγi for i 6= j:

(∑
i

kiγ0γi
)2

= +
∑
i

(ki)2
1− k1k2(γ1γ2 + γ2γ1)− k1k3(γ1γ3 + γ3γ1)

− k1k2(γ3γ2 + γ2γ3)
= ‖k‖2

1 .

⇒
(∑

i

kiγ0γi
)2n

= ‖k‖2n
1

and
(∑

i

kiγ0γi
)2n+1

= ‖k‖2n
(∑

i

kiγ0γi
)
.
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This allows to calculate:

exp
(
θ

2

∑3
i=1 k

iγ0γi

‖k‖

)
=
∑
n∈N0

(
θ
2

∑3
i=1 k

iγ0γi

‖k‖

)n
n! = . . .

=
∑
n∈N0

(
θ

2‖k‖

)2n

(2n)!

(∑
i

kiγ0γi
)2n

+
∑
n∈N0

(
θ

2‖k‖

)2n+1

(2n+ 1)!

(∑
i

kiγ0γi
)2n+1

=
∑
n∈N0

(
θ
2

)2n

(2n)! 1 + 1
‖k‖

∑
n∈N0

(
θ
2

)2n+1

(2n+ 1)!

(∑
i

kiγ0γi
)

= cosh
(
θ

2

)
1 +

sinh
(
θ
2

)
‖k‖

(∑
i

kiγ0γi
)

= cosh
(
θ

2

)1 +
sinh

(
θ
2

)
cosh

(
θ
2

)
‖k‖

(∑
i

kiγ0γi
)

Using the trigonometric identities cosh(1
2 cosh−1(ϕ)) =

√
ϕ+1√

2 we find:

cosh
(
θ

2

)
=
√
E +mc2

2mc2

Another trigonometric identity is tanh(ϕ2 ) = tanh(ϕ)
1+
√

1−tanh(ϕ)2
. Since we already have

seen that cosh(θ) = ϕ = E
mc2

and sinh(θ) = ‖k‖~
mc

, we get tanh(θ) = ‖k‖~
E

. Thus:

tanh
(
θ

2

)
=

‖k‖~c
E

1 +
√

1− ‖k‖2~2c2

E2

= ‖k‖~c
E +

√
E2 − ~2‖k‖2c2

= ‖k‖~c
E −mc2 .

Plugging in, we obtain:

S(L) =
√
E +mc2

2mc2

(
1 + ~c

E +mc2

(∑
i

kiγ0γi
))

.

4.6.4. Further identities for us(k) and vs(k) in Dirac
representation

In theorem 4.6.14 we have found an explicit expression for S(L). Using that γ0γi = αi
and the Dirac representation (see remark 3.2.9), one obtains the matrix from [BD94,
(3.7)]:

S(L) =
√
E +mc2

2mc2


1 0 p3c

E+mc2
p−c

E+mc2

0 1 p+c
E+mc2

−p3c
E+mc2

p3c
E+mc2

p−c
E+mc2 1 0

p+c
E+mc2

−p3c
E+mc2 0 1

 ,
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where p3 = ~k3 and p± = ~(k1 ± ik2). With this explicit matrix representation, the
following identities boil down to direct calculations:

us(k)†us′(k) = E

mc2 δss′ = vsk
†vs′(k)

∑
s

us(k)⊗ ūs(k) = 1
2

(
1 + ~

mc
γµkµ

)

⇒
∑
s

us(k)αūs(k)β = 1
2

(
1 + ~

mc
/k

)α
β

∑
s

vs(k)⊗ v̄s(k) = −1
2

(
1− ~

mc
γµkµ

)

⇒
∑
s

vs(k)αv̄s(k)β = −1
2

(
1− ~

mc
/k

)α
β

⇒
∑
s

us(k)⊗ ūs(k)− vs(k)⊗ v̄s(k) = 1

4.6.5. Dirac field with relativistic conventions

With the spinors constructed in this section, the Dirac field gets a new normalization
coefficient:

Ψ(x) =
∫ dk3

(2π)3

√√√√ mc2

~ω(k)
∑
s=±

(
e−ikxus(k)c+,s(k) + eikxvs(−k)c†−,−s(k)

)

The new normalization coefficients appear because of the following: In the proof
of the anti commutation relations of the Dirac field in lemma 4.4.6 , it was used
that us(k)†us′(k) = δss′ = vsk

†vs′(k). With the relativistic convention the line reads
usk

†us′(k) = E
mc2

δss′ = vs(k)†vs′(k), such that each u and v need an additional coefficient√
mc2

E(k) =
√

mc2

~ω(k) .



Part II.

Quantum field theory

The search for a relativistic covariant quantum theory has lead to a reinterpre-
tation of a single particle theory to a many particle theory. In the course of
this reinterpretation, a new object, called field operator appeared. This is the
starting point of quantum field theory, where one studies quantum fields and
their emergence from classical field theories. Another quantization approach
that is introduced in this part is the concept of functional integrals.



5
Canonical quantization

Morally, quantum mechanics as detailed theory of the microscopic scale has to give rise to classical
mechanics for a large amount of particles in the meter scale. However, classical theories are well
understood because of their ususal readiness for experiments. In contrast, it took years and still
does to test even simple quantum mechanical hypotheses. Thus, most of the time, one tries to
generalize classical theories to a quantum theory. This process is called quantization of a (field)
theory. However, there is no unique, perfect quantization scheme. Instead, numerous quantizations
have proven to be more or less efficient for different problems. One such quantization scheme is
the canonical quantization, inspired by the historically first transition from classical mechanics
to single particle quantum mechanics.

5.1. Reminder: Analytical mechanics

As preparation for the canonical field quantization, the basics of analytical mechanics
are briefly summarized. This section is more or less inspired by [Zir15].

5.1.1. Lagrange functions

Let (A, V,+) be an affine space. A classical Lagrange function L, for a system with f
degrees of freedom is a map:

L : A× . . .× A︸ ︷︷ ︸
f -times

× A× . . .× A︸ ︷︷ ︸
f -times

× R −→ R ,

(q1, . . . , qf , v1, . . . , vf , t) ≡ (q, v, t) 7−→ L(q, v, t) .

In the context of physics, v ≡ v(t) describes the velocities and q ≡ q(t) describes the
positions, i.e. v = q̇. Also, the Lagrange function is the difference between the kinetic
energy T and the potential energy U : L = T − U .
The action of the Lagrange function is defined by S(Γ) :=

∫ t2
t1

(L ◦ γ)(t) dt, where
t 7→ γ(t) is a parametrization of the curve Γ. The equations of motions follow from
Hamilton’s principle of stationary action, i.e. δS(Γ,Ψ) = 0 for all curves Ψ with
ψ(t1) = 0 = ψ(t2). With the methods of chapter G, the equations of motion, better
known as Euler-Lagrange equations follow:

∂L(q, q̇, t)
∂qi

− d

dt

∂L(q, q̇, t)
∂q̇i

= 0 .
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5.1.2. Legendre transformation and Hamilton function

Let f : X → R be a continuous function for a vector space X. This function is called
convex, if

∀x, y ∈ X : f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x)) ∀t ∈ [0, 1] .

Graphically this means, that the value of the function of points on the straight line
between x and y is less than the corresponding value of the line in R between f(x) and
f(y).1 In the case X = R it can be understood as the function being always below
secant lines.

Definition 5.1.1.
The Legendre transformation L maps convex functions C0(X) onto functions
C0(X∗) by

(Lf)(p) := sup
x∈X
{p(x)− f(x)} .

Lemma 5.1.2.
Let f : X → R be convex, then the function Fp : X → R , x 7→ p(x) − f(x) is
concave.

Proof 5.1.3.
Let x, y ∈ X be arbitrary and t ∈ [0, 1]:

Fp(x+ t(y − x)) p linear= p(x) + t(p(y)− p(x))− f(x+ t(y − x))
f convex
≥ p(x) + t(p(y)− p(x))− f(x)− t(f(y)− f(x))

= p(x)− f(x) + t(p(y)− f(y)− p(x) + f(x))
= Fp(x) + t(Fp(y)− Fp(x)) .

Theorem 5.1.4.
Let f ∈ C1(X), then the Legendre transformation is given by

(Lf)(p) = p(h(p))− f(h(p))

where h : X∗ → X is defined as the inverse of the map g : X → X∗, x 7→ (df)x.

Proof 5.1.5.
Define the function Fp(x) = p(x)− f(x). By definition, the function Fp(x) has a

1Usually, the condition is written differently as f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x).
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global maximum in xp, such that

Fp(xp) = sup
x∈X

Fp(x) = sup
x∈X
{p(x)− f(x)} = (Lf)(p) .

Since X has no boundary points as vector space, the global maximum is also a local
maximum, such that (dFp)xp(v) = 0 ∀v ∈ X determines xp. Since Fp is concave
(lemma 5.1.2), xp is determined uniquely, such that we need no further condition
like the Hessian etc.. We calculate2:

(dp)x(v) = d

ds

∣∣∣∣∣
s=0

p(x+ sv) = d

ds

∣∣∣∣∣
s=0

p(x) + s · p(v) = p(v) .

Hence:

(dFp)xp(v) = p(v)− (df)xp(v) = 0 ⇔ p = (df)xp = g(xp)

⇔ xp = h(p) .

Finally, plugging in the expression for xp proves the claim:

(Lf)(p) = Fp(xp) = p(h(p))− f(h(p)) .

Corollary 5.1.6.
The relation between p and xp is given by

xp = h(p) and p = (df)xp .

Let {ei} be an arbitrary basis of X and {ϑi} the dual basis of X∗. Then:

(Lf)(p) = pih
i(p)− f(h(p)) ,

where we have used the summation convention and p = piϑ
i and h = hiei. Furthermore:

p = (df)xp = ∂f(xp)
∂xi

dxi ⇒ pi = ∂f(xp)
∂xi

(5.1)

Theorem 5.1.7.
Let f ∈ C2(X) be a convex function, then the following equalities hold:

i) DpLf = h(p) ii) (L(Lf))(x) = f(x) .

The latter means, that L is an involution, i.e. L2 = 1.

2The isomorphism of X and X∗∗ allows for the even shorter calculation dp(v) = v(p) = p(v).
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Proof 5.1.8.
First we calculate Dp(p ◦ h). Let v ∈ X∗, then:

Dp(p ◦ h)(v) = d

ds

∣∣∣∣∣
s=0

(p+ sv)(h(p+ sv))

= d

ds

∣∣∣∣∣
s=0

p(h(p+ sv)) + sv(h(p+ sv))

= p(Dph(v)) + v(h(p)) ≡ (p ◦Dph)(v) + (h(p))(v) .

Thus we find the first claim:

DpLf = p ◦Dph+ h(p)−Dh(p)f ◦Dph

= p ◦Dph+ h(p)− g(h(p)) ◦DpH

= p ◦Dph+ h(p)− p ◦DpH = h(p) .

For the second claim we define h̃ : X → X∗ as the inverse of p 7→ DpLf . With
DpLf = h(p) it follows that h ◦ h̃ = 1. Using the canonical isomorphism X∗∗ ∼= X,
we know that h̃(x)(x) = x(h̃(x))

(L2f)(x) = x(h̃(x))− (Lf)(h̃(x))
= x(h̃(x))− h̃(x)(h(h̃(x))) + f(h(h̃(x)))
= x(h̃(x))− h̃(x)(x) + f(x) = f(x) .

The Hamilton function is defined as Legendre transformation of a Lagrange function for
fixed q and t, i.e. f : q̇ 7→ L(q, q̇, t): With theorem 5.1.4 and corollary 5.1.6 this means:

H(q, p, t) = piq̇
i − L(q, q̇, t)

∣∣∣
q̇=q̇p

,

For the momentum (5.1) then reads

pi = ∂L(q, q̇p, t)
∂q̇i

.

It is common practice to identify q̇ and q̇p notationally and simply write

pi = ∂L(q, q̇, t)
∂q̇i

.

The Euler-Lagrange equations become Hamilton’s equation:

ṗk = −∂H
∂q

and q̇k = ∂H

∂p
.
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5.1.3. Extension to fields

The extension of Lagrangian mechanics for fields is covered in chapter G, here we will
only adopt further physical conventions. The Lagrange function L(φIJ , φIJ,µ) is defined
in terms of Lagrange densities (also called Lagrangian) L(φIJ , φIJ,µ) by

L(φIJ , φIJ,µ) =
∫
L(φIJ , φIJ,µ) dx1 . . . dxn .

The zeroth coordinate corresponds to the time and is given by x0 = ct in Minkowski-
spacetime. Since the difference is only a factor c we will consider the Euclidean case
and use x0 and t interchangeably. The action is as usual defined by

S[φ] =
∫
L(φIJ , φIJ,µ) dx0 =

∫
L(φIJ , φIJ,µ) dx0 . . . dxn ,

in accordance to chapter G. In said chapter, it is shown that:

δS

δφIJ
=
∂L(φIJ , φIJ,µ)

∂φIJ
− ∂µ

∂L(φIJ , φIJ,µ)
∂φIJ,µ

.

Following [AS10, chapter 1], we define:

Definition 5.1.9.
Let L(φj, ∂iφj) be a Lagrangian. The canonical momenta π`, conjugate to φ`
is defined by

π` := ∂L(φj, ∂iφj)
∂φ̇`

.

If the relation between π` and φ̇` is invertible, i.e. φ̇` can be written in terms of
the πj: φ̇`(φj, πj), the Hamilton density H is defined by

H(φj, πj) =
∑
`

π` · φ̇` − L(φj, ∂iφj) .

Lemma 5.1.10.
Let L =

∫
L dx1 . . . dxn be a Lagrange function, then the canonical momentum is

given by
π`(x) = δL

δφ̇`
.

Proof 5.1.11.
The Lagrange function defines a functional L[φ̇j] of φ̇j but not φ̈j. The Euler-
Lagrange equations for φ̇j and φ̈j (note that ∂L

∂φ̈`
= 0) yield:

δL(φ̇j, ψj) =
∫ ∑

`

∂L
∂φ̇`

ψj dx
1 . . . dxn

!=
∫ ∑

`

δL

δφ̇`
ψj dx

1 . . . dxn
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⇒ ∂L
∂φ̇`

= δL

δφ̇`
.

Theorem 5.1.12.
Let H be a Hamilton density, derived as Legendre transform from a Lagrange
density and H =

∫
H dx1 . . . dxn the Hamilton function. Then, the canonical

equations of motion read

φ̇` = δH

δπ`
and π̇` = −δH

δφ`
.

Proof 5.1.13.
The first equation is immediate, since H depends only on πj but not π̇j, such that

δH

δπ`
= ∂H
∂π`

= φ̇` +
∑
k

πk
∂φ̇k
∂π`
−
∑
k

∂L
∂φ̇k

∂φ̇k
∂π`

= φ̇` ,

where ∂L
∂φ̇k

= πk was used. For δH
δφ`

, the Euler-Lagrange equations yield:

δH

δφ`
= ∂H
∂φ`
− ∂k

∂H
∂(∂kφ`)

= − ∂L
∂φ`

+ ∂tπ` + ∂k
∂L

∂(∂kφ`)
= π̇` −

δL

δφ`
.

Since we want to find solutions, that satisfy Hamilton’s principle of least action, it
holds that δL

δφ`
= 0, which leads to the claim.

5.1.4. Noether’s theorem

Noether’s theorem relating symmetries and continuity equations, that lead to conserved
quantities with proper boundary conditions, also exists for fields. For this subsection
we follow more or less [Wei14, section 1.3].

Remark 5.1.14.
This subsection should be read with caution, as the author is not sure, if the
definitions do work in the general context. The goal is, to define symmetries and
conservation laws, without the use of infinitesimals. So far, this does only work, if
the Lagrangian does not explicitly depend on position/time.

Definition 5.1.15.
Let L(φν , ∂µφν) be a Lagrangian density. A continuous symmetry is a differ-
entiable one parameter group (φν)s with (φν)0 = φν , such that

d

ds

∣∣∣∣∣
s=0
L((φν)s, ∂µ(φν)s) = ∂µK

µ ,
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for some Kµ.

This definition of a symmetry allows to formulate Noether’s theorem without the need
of infinitesimals.

Theorem 5.1.16.
Let (φν)s be a continuous symmetry with d

ds

∣∣∣
s=0

(φν)s = Xν and
jµ = ∑

ν

(
∂L

∂∂µφν

)
Xν −Kµ, then on-shell, i.e. if the φ satisfies the equations of

motion, it holds that:
∂µj

µ = 0 .

Proof 5.1.17.
Before using the assumption of any symmetry we can calculate ( using (φν)0 = φν):

d

ds

∣∣∣∣∣
s=0
L((φν)s, ∂µ(φν)s) =

∑
ν

∂L
∂φν

d

ds

∣∣∣∣∣
s=0

(φν)s +
∑
ν,µ

∂L
∂∂µφν

d

ds

∣∣∣∣∣
s=0

∂µ(φν)s

=
∑
ν

(
∂L
∂φν

d

ds

∣∣∣∣∣
s=0

(φν)s +
∑
µ

∂µ

(
∂L

∂∂µφν

d

ds

∣∣∣∣∣
s=0

(φν)s
)

−
∑
µ

(
∂µ

∂L
∂∂µφν

)
d

ds

∣∣∣∣∣
s=0

(φν)s
)

=
∑
ν

(∑
µ

∂µ

(
∂L

∂∂µφν

d

ds

∣∣∣∣∣
s=0

(φν)s
)

+
(
∂L
∂φν
−
∑
µ

(
∂µ

∂L
∂∂µφν

))
d

ds

∣∣∣∣∣
s=0

(φν)s
)

=
∑
ν

(∑
µ

∂µ

(
∂L

∂∂µφν

)
Xν + δL

δφν
Xν

)

Since (φν)s is a continuous symmetry it holds by definition, that:

d

ds

∣∣∣∣∣
s=0
L((φν)s, ∂µ(φν)s) = ∂µK

µ .

Defining

jµ =
∑
ν

(
∂L

∂∂µφν

)
Xν −Kµ ,

and plugging in, yields:

∂µK
µ = ∂µj

µ + ∂µK
µ + δL

δφν
Xν ⇒ ∂µj

µ = − δL

δφν
Xν .

If the field φ satisfies the equations of motion, then δL
δφν

= 0, which concludes the
proof.
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Next we consider the case of translation invariance, which are known to correspond to
energy (for x0) and momentum (for xj). Let T (s, v) define the shift operator, defined
by

(T (s, v)f)(x) = f(x+ sv) with s ∈ R , v ∈ Rn .

Using a Taylor expansion, the action of the shift can be written as:

(T (s, v)f)(x) = f(p) + ∂ρf(x) · svρ +O(s2) .

Then, the family (φν)s = T (s, v)φµ has the following parameter derivative:

Xν(x) = d

ds

∣∣∣∣∣
s=0

(φν)s(x) = d

ds

∣∣∣∣∣
s=0

φν(x+ sv)

= d

ds

∣∣∣∣∣
s=0

(
φν(x) + s · vρ∂ρφν(x) +O(s2)

)
= vρ∂ρφν(x) .

If the Lagrangian does not depend explicitly on x, i.e. L(x) = L(φν(x), ∂µφν(x)), then

d

ds

∣∣∣∣∣
s=0

T (s, v)L = vρ∂ρL .

Note, that the partial derivatives commute with shifts by constants (here sv) in the
argument, such that ∂µT (s, v)f = T (s, v)∂µf . Since the only position dependence arises
from the fields, and partial derivatives commute, we observe that

d

ds

∣∣∣∣∣
s=0
L(T (s, v)φν(x), ∂µT (s, v)φν(x)) = d

ds

∣∣∣∣∣
s=0

T (s, v)L = vρ∂ρL = ∂ρK
ρ .

Thus we see that Kµ = vµL and obtain:

jµ =
∑
ν

(
∂L

∂∂µφν

)
vρ∂ρφν − vµL = vρ

(∑
ν

(
∂L

∂∂µφν

)
∂ρφν − δµρL

)
≡ aρT µρ

∂µj
µ = 0 ⇒ ∂µT

µ
ρ = 0 ⇒ ∂µT

µν = 0 .
The tensor with raised index T µν is called the energy-momentum tensor:

T µν =
∑
η

(
∂L

∂∂µφη

)
∂νφη − gµνL and ∂µT

µν = 0 (5.2)

5.2. The quantization

The canonical quantization is a well covered topic in the literature. Here we briefly
cover the idea, that can be found in [Sch08, section 12.3] for example.

To understand the motivation behind canonical quantization, it is helpful to recall the
historical quantization. The initial theory is a classical mechanical theory, formulated
in Hamiltonian mechanics. That is, there is a Hamilton function H(pj, qk). Then the
momenta pj and positions qk are promoted to hermitian operators p̂j and q̂k, such that
the following commutation relations are satisfied:

[q̂k, p̂j] = i~δkj , [q̂j, q̂k] = 0 , [p̂j, p̂k] = 0 .
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In the case of a field theory, the Hamilton density H(φj, πj, x, t) defines the Hamilton
function by H =

∫
H dV . Here the “variables” of interest are the fields φj(x, t) and

πj(x, t). The fields are promoted to operators φ and π, that have to satisfy the following
equal time (anti) commutator relations for bosons (fermions):

[φj(x, t), φk(y, t)]± = 0 , [πj(x, t), πk(y, t)]± = 0 ,

[φj(x, t), πk(y, t)]± = i~δjkδ(x− y) ,

where [·, ·]− is the usual commutator [·, ·] and [·, ·]+ is the usual anti commutator {·, ·}.

Remark 5.2.1.
The Delta functions are used, since πj and φj are momentum and position densities,
such that ∫

dx3 [φj(x, t), πk(y, t)]± = i~δjk .

To find expressions for the quantum fields, one can try to follow the harmonic oscillator
analogy further, and try to bring the Hamilton density in the form Hp = ∑

j
1

2mπ
2
j +

mω2

2 φ2
j , e.g. by Fourier transformation. Then, from the harmonic oscillator H =

p2

2m + 1
2mω

2q2, where a =
√

mω
2~ (q + i

mω
p), one defines:

aj =
√
mω

2~ (φj + i
mω
πj)

calculates a†j and expresses φj and πj in terms of these creation/ annihilation operators.
Finally, the meaning of these creation/ annihilation operators has to be found, e.g. as
in subsection 5.4.2.
Another approach to obtain the quantum fields is to construct the field operators

form second quantization, as we have done in section 4.4.

5.3. From particles to quantum fields

As a first application of the canonical quantization, we consider the 1d harmonic chain,
as presented in [Zir14]. That is, a collection of N identical masses m connected by
identical springs with spring constant c.

c c c c

uj−1

m

uj

m

uj+1

m

Figure 5.1.: Harmonic chain in one dimension.

This section also motivates the field theoretic description of systems, that are discrete
or even finite.
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5.3.1. Discrete equations of motion

Denoting the deviation from the equilibrium position of the j-th mass by uj , a standard
result from analytical mechanics is the Lagrange function:

L(u, u̇) = m

2

N∑
j=1

u̇j −
c

2

N∑
j=1

(uj − uj−1)2,

where we have used periodic boundary conditions (u0 = uN ) for convenience. From the
Euler-Lagrange equations, we find the equations of motion:

müj = −c(2uj − uj+1 − uj−1) .

To bring the equations of motion in a more suggestive form for later comparison with
the continuum limit, we introduce the discrete 1d Laplace operator

∆̃jj′ = −2δjj′ + δj(j′+1) + δj(j′−1) ⇒ (∆̃u)j = (−2uj + uj+1 + uj−1)

Denoting
√

c
m

= Ω, the equations of motion become:

1
Ω2 üj − (∆̃u)j = 0 .

For fixed j′, the eigen vectors of the discrete Laplace operator are

ψj
′ = e2πi jj

′
N

with eigen values

Ej′ = −2 + e2πi j
′
N + e−2πi j

′
N = −2 + 2 cos(2π j′

N
) = −4 sin2(π j′

N
) .

Thus the normal modes (principal solutions) for the equation of motion are:

ψj
′(t) = ei(2π

jj′
N
−ωt) with ω = Ω

√
Ej′ = Ω|2 sin(π j′

N
)|

The solutions can also be brought in a suggestive form, by labeling the components of
the vectors with x = j L

N
:= ja, where a is called lattice constant. Also, defining the

wave number by k = 2π
a
j′

N
, the normal modes can be written as

ψ(x, t) = ei(kx−ωt) with ω = Ω|2 sin(ka2 )|

5.3.2. Continuum limit

Often it is easier to calculate in a continuous setting, using the results from analysis,
instead of solving the original discrete setting. The idea/ hope is, that the following
diagram commutes:

Lagrange system
discrete

Lagrange system
continuous

equations of motion
discrete

equations of motion
continuous

continuum
approximation

principlevariational principlevariational

continuum
approximation
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In the case of the harmonic chain, the continuum approximation amounts to the
substitutions:

uj(t) −→ φ(x, t) , u̇j(t) −→ φ̇(x, t) , uj(t)− uj−1(t) −→ a∂xφ(x, t) ,

N∑
j=1
−→ 1

a

∫ L

0
dx .

Hence, the Lagrange function of the harmonic chain becomes:

L(φ, φ̇, φ′) =
∫ L

0

m

2aφ̇
2 − ca

2 φ
′2 dx =

∫ L

0
L(φ, φ̇, φ′) dx

Since L only depends on φ′ and φ̇, but not φ, the variational principle reads:

δS

δφ
= ∂t

∂L
∂φ̇

+ ∂x
∂L
∂φ′

= 0 ,

where S =
∫ T

0 L dt. We find:

∂t
∂L
∂φ̇

= m

2a∂t∂φφ̇
2 = m

a
φ̈2 and ∂x

∂L
∂φ

= −ca2 ∂x∂φ
′φ′2 = −caφ′′

the equations of motion become the 1d wave equation with speed of sound vs = a
√

c
m
:

1
v2
s

φ̈− φ′′ = 0 .

The normal modes of this partial differential equation are

φ(x, t) = ei(kx−ωt) with ω = vs|k| .

Comparing the discrete with the continuous solution, we see that

discrete continuous

normal modes ψ(x, t) = ei(kx−ωt) φ(x, t) = ei(kx−ωt)

ω Ω|2 sin(ka2 )| =
√

c
m
|2 sin(ka2 )| vs|k| = a

√
c
m
|k|

Noticing, that the first Taylor approximation of the discrete frequency ω is the continuous
frequency, the continuum approximation works for small wave numbers k.

5.3.3. Scalar bosons and quantization

An application of the 1d harmonic chain is the usage as model for scalar bosons in 1d.
For the quantization the Hamilton function is needed, such that we calculate:

π = δL

δφ̇
= ∂L
∂φ̇

= m

a
φ̇ and L(φ, π) = a

2mπ2 − ca

2 φ
′2

⇒ H = a

2mπ2 + ca

2 φ
′2 .
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To shorten the notation we write a
m

= 1
µ
as mass density and ca = κ as elastic constant.

Then, the Hamilton function reads:

H(φ, π) =
∫ L

0

1
2µπ

2 + κ
2 φ
′2 dx

The next step is to use the Fourier transformation, or in this case, because of the
compact interval [0, L] the Fourier series. Because of the half interval [0, L], one could
develop the series only in real sine or cosine modes (Half range Fourier series). However,
for computational ease, it is worthwhile to use the general complex series:

φ(x) =
√

1
L

∑
k∈ 2π

L
Z

φke
ikx and π(x) =

√
1
L

∑
k∈ 2π

L
Z

πke
ikx ,

where we have used k = 2πn
L

for the wave number. The Fourier coefficients are

φk =
√

1
L

∫ L

0
e−ikxφ(x) dx and πk =

√
1
L

∫ L

0
e−ikxπ(x) dx .

For the Fourier coefficients it holds that (f ′)k = ikfk as in the Fourier transformation
case (theorem E.1.6). We calculate, that there is a result, similar to lemma F.3.4,
producing the Kronecker delta3:

∫ L

0
φ′2 dx = − 1

L

∫ L

0

∑
k,`

k`φkφ`e
−i(k+`)x dx = −

∑
k,`

δk,−`k`φkφ`e
−i(k+`)x

=
∑
k

k2φkφ−k .

In the same way one finds
∫ L

0 π2 dx = ∑
k πkπ−k. Also, noting that (after formally

promoting the fields to operators)

φ†k := φk =
√

1
L

∫ L

0
e−ikxφ(x) dx =

√
1
L

∫ L

0
eikxφ(x) dx = φ−k

and similarly for πk, so it follows that

φkφ−k = |φk|2 and πkπ−k = |πk|2

Plugging all in:
H =

∑
k

|πk|2

2µ + κk2

2 |φk|
2 =:

∑
k

Hk .

3In general:

δmn = 1
2π

∫ 2π

0
ei(m−n)x dx = 1

L

∫ L

0
e

2πi(m−n)x
L y dy = 1

L

∫ L

0
ei(k−`)y dy .

Also note that δmn = δk` for k = 2πn
L and ` = 2πm

L .
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Following the general procedure, we define:

ak =
√
mωk
2~ (φk + i

mωk
πk) ⇒ a†k

√
mωk
2~ (φ−k − i

mωk
π−k) ,

where we have set ωk := |k|
√

κ
µ
and m = µ. Solving for the fields, we obtain:

φk =
√

~
2mωk

(
ak + a†−k

)
and πk = −i

√
~mωk

2
(
ak − a†−k

)
.

For the field operators we find:

φ(x) =
√

1
L

∑
k∈ 2π

L
Z

√
~

2mωk

(
eikxak + e−ikxa†k

)

π(x) = −i
√

1
L

∑
k∈ 2π

L
Z

√
~mωk

2
(
eikxak − e−ikxa†k

)
.

Using the exponential representation of the Kronecker delta, one can calculate the
anti commutator rules for φk and πk, from which the anti commutator relations of the
creation/annihilation operators can be calculated:

[φk, π`] = 1
L

∫ L

0

∫ L

0
eikxei`y[φ(x), π(y)] dxdy

= 1
L

∫ L

0

∫ L

0
eikxei`yi~δ(x− y) dxdy

i~
L

∫ L

0
ei(k−`)x dx = i~δk` .

The remaining anti commutators can be calculated the same way. We deduce, that the
creation/annihilation operators satisfy:

[ak, a†`] = δk` and [ak, a`] = 0 = [a†k, a
†
`] .

From φ†k = φ−k it follows that (a†k)† = a−k, which is used to calculate:

H =
∑

k∈ 2π
L
Z

Hk =
∑

k∈ 2π
L
Z

~mωk
2

(
aka

†
k + a†−ka−k

)

⇒ :H: =
∑

k∈ 2π
L
Z

~mωk
2

(
a†kak + a†−ka−k

)

Using that ωk is symmetric in k, one can calculate:

:H: =
∑

k∈ 2π
L
Z

~mωk a†kak = ~µ
√
κ
µ
|k| a†kak .
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5.4. The free real scalar field

In this section we will consider an example of the canonical quantization, where the fields
are not confined in a one dimensional compact space region. To focus on the essential
steps, natural units and real field will be used, unlike usual in quantum mechanics. This
will become noticeable in the momentum operator for example.

This section follows [Wei14, Sections 1.4, 1.6 and 1.11].

5.4.1. Quantization

We consider the Klein-Gordon equation in natural units (c = ~ = 1).(
∂2

∂2
t

−∇2 +m2
)
φ = 0 .

Since qft was introduced as relativistic description for quantum systems, we use the
covariant formulation with metric g = diag(1,−1,−1,−1) and x0 = t. Then the
Klein-Gordon equation can be rewritten as(

∂µ∂
µ +m2

)
φ = 0 .

The next step is to fin the Lagrangian (or directly the Hamiltonian). Unfortunately
there is no unique way to find Lagrangians. The next best thing we can do, is to guess,
and to check that the equations of motions are correct.

Lemma 5.4.1.
The Lagrangian L(φ, ∂φ, x) = 1

2∂µφ∂
µφ− 1

2m
2φ2 yields the Klein-Gordon equation.

Proof 5.4.2.
All we need to do, is to calculate the Euler-Lagrange equations:

∂

∂φ
L = −m2φ ,

∂

∂(∂µφ)L = ∂xµ |xµ=∂µφ
1
2g

ηνxηxν = 1
2g

ηνδµηxν + 1
2g

ηνδµνxν

∣∣∣∣
xµ=∂µφ

= 1
2(gµν∂νφ+ gη

µ

∂ηφ) = ∂µφ

⇒ ∂µ
∂

∂(∂µφ)L = ∂µ∂
µφ ,

⇒ 0 = δL

δφ
= −

(
∂µ∂

µ +m2
)
φ ⇔

(
∂µ∂

µ +m2
)
φ = 0 .
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As the proof shows, one could also have chosen −L, but would loose the convenient
analogy to L = T − V . The next step is to find the canonical momentum π:

π = δL

δφ̇
= ∂

∂φ̇
L = φ̇ .

Note that in the relativistic case φ̇ = ∂0φ is meant here. In this case, the Hamiltonian
density is rather simple to be found, because of φ̇(π) = π:

H(φ, π) = π2 − 1
2(π2 + ∂jφ∂

jφ) +m2φ2 = π2

2 + 1
2
(
(∇φ)2 +m2φ2

)
.

At this point, one formally applies the canonical quantization, here in the time-
independent form. To develop further insight, we continue with a mode expansion, i.e.
consider the momentum space (p = k since ~ = 1).

φ(x) =
∫ dp3

(2π)3 φ̃(p)eipx and π(x) =
∫ dp3

(2π)3 π̃(p)eipx .

In the momentum space, the Hamiltonian H =
∫
dx3 H “decouples”, i.e. becomes

diagonal in the momentum. To see that, we calculate, using theorem E.1.6:

(∇φ)2 =
(
∇
∫ dp3

(2π)3 φ̃(p)eipx
)2

=
∑
j

∂j

(∫ dp3

(2π)3 φ̃(p)eipx
)
· ∂j

(∫ dq3

(2π)3 φ̃(q)eiqx
)

=
∑
j

(∫ dp3

(2π)3 ipjφ̃(p)eipx
)(∫ dq3

(2π)3 iqjφ̃(q)eiqx
)

=
∫ dp3dq3

(2π)6 (−p · q)ei(p+q)xφ̃(p)φ̃(q) .

Considering
∫
dx3 (∇φ)2 with lemma F.3.4 in the kernel notation:
∫
dx3 (∇φ)2 =

∫
dx3

∫ dp3dq3

(2π)6 (−p · q)ei(p+q)xφ̃(p)φ̃(q)

=
∫ dp3dq3

(2π)6 (−p · q)φ̃(p)φ̃(q)
∫
dx3 ei(p+q)x

=
∫ dp3dq3

(2π)6 (−p · q)φ̃(p)φ̃(q) · (2π)3δ(p− (−q))

=
∫ dp3

(2π)3 p
2φ̃(p)φ̃(−p) .

In the same way, one can calculate that φ2 =
∫ dp3

(2π)3 φ̃(p)φ̃(−p). Since the scalar field
in the position space is real, we obtain self adjoint operators, and it holds that

φ†(p) := φ̃(p) =
∫
dx3 e−ipxφ(x) =

∫
dx3 e−i(−p)xφ(x) = φ̃(−p) ,
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such that φ̃(p)φ̃(−p) = |φ̃(p)|2. Thus the Hamiltonian becomes:

H =
∫ dp3

(2π)3
1
2 |π̃(p)|2 + 1

2
(
p2 +m2

)
|φ̃(p)|2

≡
∫ dp3

(2π)3
1
2 |π̃(p)|2 + 1

2ω
2
p|φ̃(p)|2 ≡

∫ dp3

(2π)3 H̃p

where we have defined ωp =
√
p2 +m2 and H̃p = 1

2 |π̃(p)|2 + 1
2ω

2
p|φ̃(p)|2. Inspired by the

harmonic oscillator, we now define:

a(p) =
√
ωp
2

(
φ̃(p) + i

ω
π̃(p)

)
⇒ a†(p) =

√
ωp
2

(
φ̃(−p)− i

ω
π̃(−p)

)
.

Solving for φ̃(p) and π̃(p), as is done for the harmonic oscillator, we find:

φ̃(p) =
√

1
2ωp

(
a(p) + a†(−p)

)
and π̃(p) = −i

√
ωp
2
(
a(p)− a†(−p)

)
. (5.3)

Plugging these into the Fourier-transformation for φ(x) and π(x) and using∫
dpn f(−p)eipx =

∫
dpn f(p)e−ipx ,

we obtain the mode expansion of the free field operators:

φ(x) =
∫ dp3

(2π)3

√
1

2ωp
a(p)eipx + a†(p)e−ipx

π(x) = −i
∫ dp3

(2π)3

√
ωp
2 a(p)eipx − a†(p)e−ipx .

From the commutation relations for φ(x) and π(x) we calculate:

[φ̃(p), π̃(q)] =
∫
dx3 dy3 e−ipxe−iqy[φ(x), π(y)]

=
∫
dx3 dy3 e−ipxe−iqyiδ(x− y) = i

∫
dx3e−i(p+q)x

= i(2π)3δ(p+ q) .

In the same way, we see that [φ̃(p), φ̃(q)] = 0 = [π̃(p), π̃(q)]. From that and (5.3), we
deduce:

[a(p), a†(q)] = (2π)3δ(p− q) [a†(p), a†(q)] = 0 = [a(p), a(q)] .

These commutator relations show, that a†(p) and a(p) are of bosonic nature. If we had
choosen {·, ·} for the field quantization, we would have got fermionic operators instead.

The last step is to calculate the normal ordered Hamiltonian in terms of the creation/
annihilation operators. We notice from (5.3) and φ̃†(p) = φ̃(−p), that (a†(p))† = a(−p),
such that:

H̃p = 1
2 |π̃(p)|2 + 1

2ω
2
p|φ̃(p)|2
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= 1
2(−i)2ωp

2
(
a(p)− a†(−p)

) (
a(p)− a†(−p)

)†
+
ω2
p

2
1

2ωp

(
a(p) + a†(−p)

) (
a(p) + a†(−p)

)†
= −ωp4

(
a(p)− a†(−p)

) (
a†(−p)− a(p)

)
+ ωp

4
(
a(p) + a†(−p)

) (
a†(−p) + a(p)

)
= . . . = ωp

2
(
a(p)a†(p) + a†(−p)a(−p)

)
⇒ :Hp: = ωp

2
(
a†(p)a(p) + a†(−p)a(−p)

)
.

Since ωp =
√
p2 +m2 is symmetric in p we find:

:H: =
∫ dp3

(2π)3 ωp a
†(p)a(p) .

5.4.2. Momenta exitation

We want to find an interpretation for the a(p) and a†(p). It will turn out that these
operators create momenta, such that it is pertinent to consider the momentum operator
:P :. Recalling the energy momentum tensor, we are looking for T 0j, given by equation
(5.2). We calculate:

∂L
∂(∂0φ) = ∂µφ ⇒ T 0j = ∂L

∂(∂0φ)∂
jφ− g0jL = φ̇∂jφ .

The momentum is then given by pj =
∫
dx3 φ̇∂jφ. Inserting the mode expanded

operators, where φ̇(π) = π, we find after normal ordering:

P j =
∫ dp3

(2π)3 p
ja†(p)a(p) .

Summarizing the Hamilton operator and momentum operator to the four momentum
P = (H,P 1, . . . , P 3), a direct calculation shows that:

[Pµ, a†(p)] = pµa†(p) and [Pµ, a(p)] = −pµa(p) ,

with p0 = ωp. Since the operators Pµ are hermitian, there exist (pseudo) eigen states
|kµ〉 with real eigen values kµ, such that:

Pµ|kµ〉 = kµ|kµ〉 .

From the commutator relations we see that:

Pµa†(p)|kµ〉 =
(
a†(p)Pµ + pµa†(p)

)
|kµ〉 = (kµ + pµ)|kµ〉 .

In the same way:
Pµa(p)|kµ〉 = (kµ − pµ)|kµ〉 .

This means, that a†(p) excites the state |kµ〉 with the momentum pµ whereas a(q)
decreases the momentum by pµ.
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Functional integrals

In its best known form, integrals take region in space which is evaluated by an expression, i.e. a
function or differential form. Functional integrals however take regions in the set of functions.
This chapter does not focus on the theory of functional integrals in general, but introduces the
important concepts for quantum field theory.

6.1. Feynman path integral

A prime example for functional integrals in physics is the Feynman path integral, whose
interpretation leads to the saying, a quantum particle does not take one, but all paths.
This section is mostly based on [Zir14, chapters I and II] and [AS10, chapters 1 and 3].

6.1.1. Construction of the path integral

We consider an autonomous system, described by the Hamilton operatorH. Autonomous
means, that H does not depend explicitly on the time. In section 1.5, we have already
used the time evolution operator Ut. Here we employ the slightly more general form
U(t, t0), defined by

i~
d

dt
U(t, t0) = HU(t, t0) and |Ψ(t)〉 = U(t, t0)|Ψ(t0)〉 .

From the definition it is clear, that the time evolution operator maps a state |Ψ(t0)〉
at time t0 to the state |Ψ(t)〉 at time t. This means, the operator U(t, t0) takes states
at time t0 and has them evolve naturally under the Hamiltonian H until the time t,
hence the name. For autonomous systems, the time evolution operator can be written
explicitly as

U(t, t0) = e−
i
~H·(t−t0) .

We pass to the position representation and define:

Definition 6.1.1.
If there is a “function” K(q′, q, t′, t), such that for all q, q′ and t, t′

Ψ(q′, t′) = U(t′, t)Ψ(q′, t) =
∫
dqn K(q′, q, t′, t)Ψ(q, t)

holds, it is called propagator of the system.

The word function in the definition is to be understood in a broader sense, as things
like delta-functions are usually included. The motivation behind this definition, is the
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convention of the physical literature (also discussed at the end of section F.3) to write
also singular distributions G as integration-operator with integral kernel g:

G[ϕ] =
∫
dqn g(q)ϕ(q) .

A better motivation fo such a definition might be the suggestiveness of Dirac notation
together with the pseudo completeness relation

∫
dqn |q〉〈q| = 1:

Ψ(q′, t′) = 〈q′|Ψ(t′)〉 = 〈q′|U(t′, t)|Ψ(t)〉 =
∫
dqn 〈q′|U(t′, t)|q〉〈q|Ψ(t)〉

≡
∫
dqn K(q′, q, t′, t)Ψ(q, t) .

In the physical literature, the propagator 〈q′|U(t′, t)|q〉 is understood as the (q′, q)-matrix
elements. However, formally one should be careful with such terms, as a Hilbert basis
needs to be countable, whereas |q〉 is not.

The spacial case Ut := U(t, 0) reveals further structure of the set {Ut}t∈R. This set is
a one-parameter group. Indeed, the explicit form Ut = e−

i
~Ht allows to easily see, that

Ut ◦ Us = Ut+s. Another important result follows from the observation, that the action
of U(t, t0) on |Ψ(t0)〉 is independent of the argument of |Ψ〉, since U(t, t0) : H → H,
where H denotes the Hilbert space. This allows to see, that:

U(t, t0)|Ψ(t0)〉 = e−
i
~H·(t−t0)|Ψ(t0)〉 = Ut−t0|Ψ(t0)〉

⇒ U(t, t0) = Ut−t0 ∈ {Ut}t∈R .

Hence, the problem can be reduced to {Ut}t∈R, which offers helpful structure as one-
parameter group. In terms of propagators, the group structure becomes (using Fubini-
Tonelli):

Ψ(q, t+ s) = 〈q|Ut+s|Ψ〉 = 〈q|Ut ◦ Us|Ψ〉

= 〈q|Ut|UsΨ〉 =
∫
dxn〈q|Ut|x〉〈x|Us|Ψ〉

=
∫
dxn 〈q|Ut|x〉

∫
dyn 〈x|Us|y〉〈y|Ψ〉

F.T.=
∫
dyn

(∫
dxn 〈q|Ut|x〉〈x|Us|y〉

)
〈y|Ψ〉 .

From the formula above we read off, in accordance to the pseudo completeness relation:

〈q|Ut+s|q′〉 =
∫
dyn 〈q|Ut|y〉〈y|Us|q′〉 .

Also the calculation shows, how the kernel representation works for the composition of
operators in general:

〈q|A ◦B|q′〉 =
∫
dyn 〈q|A|y〉〈y|B|q′〉 .
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Remark 6.1.2.
The concept of the Feynman path integral is to split the time evolution operator
UT in a sequence of propagators Ut1 ◦ . . . ◦ UtN an then to take the limit N →∞.
In terms of propagators, this will result in a bunch of integrations, that will be
called path integral.

For the Feynman path integral, at least in this introduction, the simple form H = T +V
is used for the Hamilton operator. For the time development operator U∆t in the limit
of ∆t→ 0 we want to find a product of operators, that are more handleable. First it
holds that:

U∆t = e−
i
~H∆t = e−

i
~T∆t− i

~V∆t .

On the other hand, using theorem B.1.3 it follows that:

e
ε
2BeεAe

ε
2B = e

ε
2B
(
eεA+ ε

2B+ ε2
4 [A,B]+O(ε3)

)
= eε(A+B)+O(ε3) .

Hence for ε = − i∆t
~ :

e−
i∆t
2~ V e−

i∆t
~ T e−

i∆t
2~ V = e−

i∆t
~ (T+V )+O(∆t3) = e−

i∆t
~ H+O(∆t3) .

In the case of bounded operators T and V , the O(∆t3) terms could be ignored for
∆t→ 0, also for the first derivative, that generates the Schrödinger equation. Yet T is
not bounded here and for most cases, neither is V . Still, the assumption is, that

e−
i∆t
~ H ' e−

i∆t
2~ V e−

i∆t
~ T e−

i∆t
2~ V

holds for ∆t→ 0 (at least for reasonable physical states). To utilize this assumption,
that separates the potential and kinetic time evolution, we calculate the propagator (with
the help of the pseudo completeness relation

∫ dpn

(2π~)n |p〉〈p| because |p〉 are eigenstates
of the momentum operator p)1:

〈x|e−
i∆t
2m~p2|y〉 = 1

(2π~)n
∫
dpn 〈x|e−

i∆t
2m~p2|p〉〈p|y〉

= 1
(2π~)n

∫
dpn e−

i∆t
2m~p

2〈x|p〉〈p|y〉

= 1
(2π~)n

∫
dpn e−

i∆t
2m~p

2
e
i
~x·pe−

i
~y·p

= 1
(2π~)n

∫
dpne−

i∆t
2m~p

2− i
~ (y−x)·p

= 1
(2π~)n

√ π
i∆t
2m~

n exp
(
−(y − x)2

4~ · i∆t2m~

)

=
(

m

2πi~∆t

)n
2
e
im
2∆t (y−x)2

.

1Although there do exist methods to make these completeness relations rigorous, one has to be careful
of the domain. However, as there are several instances of sloppiness in this section, we do not
bother to proof the result any further.
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To obtain the last line, corollary 6.1.5 was used. The potential kernel is much easier to
find, since |y〉 is already an eigenstate of y:

〈x|e−
i∆t
2~ V (y)|y〉 = e−

i∆t
2~ V (y)〈x|y〉 = e−

i∆t
2~ V (y)δ(x− y) .

In the ∆t→ 0 limit, the full propagator becomes:

〈x|e−
i∆t
~ H |y〉 ' 〈x|e−

i∆t
2~ V e−

i∆t
~ T e−

i∆t
2~ V |y〉

=
∫
dqn

∫
dq′n 〈x|e−

i∆t
2~ V |q〉〈q|e−

i∆t
~ T |q′〉〈q′|e−

i∆t
2~ V |y〉

=
(

m

2πi~∆t

)n
2
∫
dqn

∫
dq′n e−

i∆t
2~ V (q)e

im
2∆t (q

′−q)2
e−

i∆t
2~ V (q′)

· δ(q − x)δ(q′ − y)

=
(

m

2πi~∆t

)n
2
e−

i∆t
2~ V (x)e

im
2∆t (y−x)2

e−
i∆t
2~ V (y)

=
(

m

2πi~∆t

)n
2

exp
(
i∆t
~

(
m

2
(y − x)2

∆t2 − 1
2(V (x) + V (y))

))

With these preparations done, the announced concept of the Feynman path integral
can be realized. That is, we intend to compute the kernel 〈x|e− it~H |y〉 by discretizing
the interval [0, t], setting ∆t = t

N
and taking the limit N →∞:

〈x|e−
it
~H |y〉 = lim

N→∞

(
m

2πi~∆t

)N·n
2
∫
Rn
dqn1 . . .

∫
Rn
dqnN−1

exp
i∆t

~

N−1∑
j=0

(
m

2
(qj+1 − qj)2

∆t2 − 1
2(V (qj+1) + V (qj))

)∣∣∣∣∣∣qN=x
q0=y

.

The right hand side is called Feynman path integral. There are several assumptions
that are involved and that follow. Most importantly, it is assumed without proof (here),
that the limit exists, though there is a factor N N

2 in front, due to ∆t = t
N
. The next

assumption is, that

i∆t
~

N−1∑
j=0

(
m

2
(qj+1 − qj)2

∆t2 − 1
2(V (qj+1) + V (qj))

)
∆t→0−→ i

~

∫ t

0

m

2 q̇(τ)2 − V (q(τ)) dτ ≡ i

~

∫ t

0
L(q(τ)) dτ = i

~
S[q(t)] ,

of course with the boundary conditions q(0) = y and q(t) = x. To obtain the notation
of the literature, the product of infinitely man integrals (together with the coefficients
in front) gets denoted by

∫
D[q(t)]:

〈x|e−
it
~H |y〉 =

∫
D[q(t)] e i~S[q(t)] .
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6.1.2. Interpretation of the path integral

To understand the meaning of the path integral, in the sense to give a physical intuition,
it is essential to understand the composition of propagators. For that reason we consider
again:

〈x|Us+τ |y〉 =
∫
R
dq 〈x|Us|q〉〈q|Uτ |y〉 .

t = s+ τ

R

t = 0

R

t = τ

R

t

x

y
q

Figure 6.1.: Illustration of propagator composition in R.

t

x

y

(a)

t

x

y

(b)

Figure 6.2.: Example path in the N slicing case (a) and the continuum limit (b).

The integration can be interpreted as summation over all possibilities. Namely, the
particle takes each path (here ignoring their form for intermediate times) from y to
each point q and then from the respecting point to x. Each point q has an associated
probability density, contributing to the probability amplitude 〈x|Us+τ |y〉. Taking two
time slicings, the summation/integration runs over all probabilities, that the particle
moves like y → q1 → q2 → x.
The same holds for N time slicings. In the limit N → ∞, the points qj become

smooth paths q(t), the particle travels along, as illustrated in figure 6.2. Each path has
a contribution to 〈x|Ut|y〉, that can be interpreted as proportional to the probability of
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the particle taking that path. The contribution is determined by e i~S[q(t)], where S is
the action, arising in the continuum limit.

6.1.3. Gaussian integral and zeta function regularization

It might help to recall some properties of Gaussian integrals in Rn as well as analytic
continuation in complex analysis:

Gaussian integrals in Rn

Lemma 6.1.3.
Let a, b, c ∈ R with a > 0, then the following equations (each of which is a
generalization of the previous one) hold:

1)
∫ ∞
∞

e−x
2
dx =

√
π 2)

∫ ∞
∞

e−a(x+b)2
dx =

√
π

a

3)
∫ ∞
∞

e−ax
2+bx+c dx =

√
π

a
e
b2
4a+c .

Proof 6.1.4.
The equations will be proven consecutively to benefit from previous calculations.

1) Using d(r2) = 2rdr the standard trick is:(∫ ∞
∞

e−x
2
dx
)2

=
∫
R2
e−(x2+y2) dx dy =

∫ ∞
0

∫ 2π

0
e−r

2
rdϕ dr

= 2π
∫ ∞

0
e−r

2
rdr = π

∫ ∞
0

e−r
2
dr2 = π .

Taking the square root proves the first equation.

2) ∫ ∞
∞

e−a(x+b)2
dx =

∫ ∞
∞

e−a(x+b)2
d(x+ b) =

∫ ∞
∞

e−ay
2
dy

=
∫ ∞
∞

e
−a( z√

a
)2
d
(
z√
a

)
= 1√

a

∫ ∞
∞

e−z
2
dz

=
√
π

a
.

3) Using the previous equations, it is enough to bring the exponent in a suitable
form:

−ax2 + bx+ c = −
(
√
ax+ b

2
√
a

)2

+ b2

4a + c = −a
(
x+ b

2a

)2

+ b2

4a + c

⇒ e−ax
2+bx+c = e−a(x+ b

2a)
2

e
b2
4a+c .

The rest follows from 2) since the last multiplicand is constant.
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Corollary 6.1.5.
Let a, c ∈ R with a > 0 and b ∈ Rn, then

∫
Rn
e−ax

2+b·x+c dxn =
(
π

a

)n
2
e
b2
4a+c .

Proof 6.1.6.
It is enough to see, that the exponential function factorizes:

e−ax
2+b·x+c = e

∑n

j=1−ax
2
j+bjxj+c = ec

n∏
j=1

e−ax
2
j+bjxj

⇒
∫
Rn
e−ax

2+b·x+c dxn = ec
(∫ ∞
∞

e−ax
2
j+bjxj dxj

)n
= ec

n∏
j=1

√
π

a
e
b2
j

4a =
(
π

a

)n
2
e
b2
4a+c .

Lemma 6.1.7.
Let A : Rn → Rn be a symmetric positive definite matrix, then:

∫
Rn
dxn e−a(x,Ax) =

(
π

a

)n
2 1

det(A) 1
2
.

Proof 6.1.8.
Since A is symmetric, there is an orthogonal matrix S, such that DA = SAST ,
where DA is the diagonalized matrix of A. The property of positive definiteness
means, that all values of DA are positive. To evaluate the integral properly, we
understand Rn as manifold with coordinate map y:∫

Rn
dxn e−a(x,Ax) =

∫
Rn

e−a(y,Ay) dy1 ∧ . . . ∧ dyn .

Define the map f : Rn → Rn in coordinates by y(f(p)) = STy(p). The push
forward then is f∗ = ST . Since S is orthogonal, i.e. det(ST ) = 1, the pullback of
the differential form is:

f ∗(dy1 ∧ . . . ∧ dyn) = det(f∗) dy1 ∧ . . . ∧ dyn = det(ST ) dy1 ∧ . . . ∧ dyn = dy1 ∧ . . . ∧ dyn

Hence the integral becomes (f−1(Rn) = Rn):∫
Rn
dxn e−a(x,Ax) =

∫
Rn

e−a(y,Ay) dy1 ∧ . . . ∧ dyn
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=
∫
f(f−1(Rn))

e−a(y,Ay) dy1 ∧ . . . ∧ dyn

=
∫
Rn
f ∗
(
e−a(y,Ay) dy1 ∧ . . . ∧ dyn

)
=
∫
Rn

e−a(ST y,AST y) dy1 ∧ . . . ∧ dyn

=
∫
Rn
dxn e−a(ST x,AST x) =

∫
Rn
dxn e−a(x,SAST x)

=
∫
Rn
dxn e−a(x,DAx) =

∫
Rn
dxn e−a

∑
i
x2
i (DA)ii

=
(

π

a · (DA)11

) 1
2

· . . . ·
(

π

a · (DA)nn

) 1
2

=
(

π

a · (DA)11

)n
2 1

((DA)11 · . . . · (DA)nn) 1
2

=
(
π

a

)n
2 1

det(DA) 1
2

=
(
π

a

)n
2 1

det(A) 1
2
.

Analytic continuation

First, we will repeat some properties of analytic functions without proof, since they are
covered in most courses on complex analysis, e.g. [Swe15].

Let f : U ⊂ C→ C be a function. This function is called analytical in z0 ∈ U , if there
is an r > 0, such that f can be represented as power series with radius of convergence
larger than r:

f(z) =
∑
n∈N0

an(z − z0)n ∀ z ∈ Br(z0) .

While not true in the real case, the complex case allows, that a holomorphic function
on an open set U ⊂ C is analytic with the taylor series as power series. In fact:

f is analytical on U ⇔ f is holomorphic on U .

Theorem 6.1.9 (analytic continuation).
Let U1, U2 ⊂ C be open and connected and fi : Ui → C be holomorphic functions.
If there is a z0 ∈ U1 ∩ U2 and an r > 0, such that

f1(z) = f2(z) ∀ z ∈ Br(z0) ,

then, for every open, connected set A ⊂ U1 ∩ U2 it holds that

f1(z) = f2(z) ∀ z ∈ A .

A consequence of this theorem is a unique continuation the the following sense. Let
f : U → R and F : V → C be holomorphic functions with nonempty open sets U ⊂
V ⊂ C, such that

f(z) = F (z) ∀ z ∈ U .



6.1. Feynman path integral 93

The function F is called analytic continuation of f . Assuming there is another function
G : V → C, which is also an analytic continuation, then, if V is connected, it holds that

F ≡ G ,

i.e. the analytic continuation is unique. This follows immediately from the last theorem,
as U ⊂ V is open and thus allows for r > 0 such that G(z) = f(z) = F (z) on Br(z0)
for any z0 ∈ U . Also, since V ∩ V = V is open and connected, F (z) = G(z) on V .

The uniqueness of analytic continuation allows to define a complicated function on a
small region, where it can be defined easily, and then to continue it to larger domains.

Remark 6.1.10 (Not true in Rn).
The analytic continuation relies on the strong concept of complex differentiation.
One might think, that the theorem is trivial in the sense, that it is also true for
real functions on Rn. However this is not the case. Recalling the bump functions
from theorem F.1.8, we know that j1 and j2 are defined on the whole Rn with
supp(j1) = B1(0) ( supp(j2) = B2(0). So clearly j1 6= j2. Yet on B1(y) for
‖y‖ > 3 it holds that j1(x) = j2(x) = 0 for all x ∈ B1(y).

Zeta function regularization

From the proof of lemma 6.1.7, it could be hoped, that in taking the limit, creating a
countable infinity, the lemma generalizes to∫

D[x(t)] e−π(x(t),Ax(t)) ∼ 1√∏∞
j=1 λj

,

for an operator A with eigen values λj. However, in the generic case, the product
sequence need not converge. One way to deal with these infinities is the so called zeta
function regularization. Additionally to [Zir14] we will also follow [Dun09].

Definition 6.1.11.
Let A be a positive self adjoint endomorphism on the vector space of paths with
Hilbert eigen basis and eigen values λn , then the zeta function for A is defined
by

ζA(s) =
∑
n∈N

λ−sn for s ∈ C .

To demand for an Hilbert eigen basis is a technicality that allows to calculate the
functional trace as sum of eigen values. From a physical point of view, if the path
integral exists, it comes from a limit from the finite dimensional case, where a positive
self adjoint operator is diagonizable.
Ignoring the convergence domain for a moment, we can calculate formally:

ζ ′A(s) = −
∑
n∈N

ln(λn) · λ−sn ⇒ ζ ′A(0) = −
∑
n∈N

ln(λn) = − ln
∏
n∈N

λn


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⇒ det(A) =
∏
n∈N

λn = e−ζ
′
A(0) .

Similarly for a quotient of determinants, we obtain formally:

ζ ′A(0)− ζ ′B(0) = −
∑
n∈N

(ln(λn)− ln(ηn)) = − ln
∏
n∈N

λn
ηn


= − ln

(∏
n∈N λn∏
n∈N ηn

)

⇒ det(A)
det(B) =

∏
n∈N λn∏
n∈N ηn

= e−(ζ′A(0)−ζ′B(0)) .

Returning to the problem at hand, the whole regularization is necessary because the
determinant is not finite. Also, the power series representation is not necessary valid
for s = 0, as is the case for λn = n. However, sometimes the complex zeta function can
be analytically continued, such that ζA(0) and ζ ′A(0) exist. One famous example is the
Riemann zeta function λn = n, for which it has been shown, that ζ(0) = −1

2 . If the
zeta function (or the difference of two zeta functions) is analytically continuable, we
hence define:

det(A) := e−ζ
′
A(0) and det(A)

det(B) = e−(ζ′A(0)−ζ′B(0)) .

This definition enables us to give the determinant a meaning for a larger class of
operators, even if the power series diverges.

First application

A first application for the functional Gaussian integral is the first order approximation
of a path integral. Recalling the Taylor polynomial for regular functions2 we want to
approximate the action functional. Let S be an action and x(t) be a critical path,
i.e. δS

δx(t) = 0. Writing an arbitrary path as q(t) = x(t) + h(t), where h(t) is a small
fluctuation around x(t), we approximate:

S[x(t) + h(t)] ≈ S[x(t)] + δS[x(t), h(t)] + 1
2δ

2S[x(t), h(t)]

= S[x(t)] + 1
2δ

2S[x(t), h(t)] .

The first variation vanishes, since x(t) is a critical path. Rewriting in the standard
physical notation, the approximation reads:

S[x(t) + h(t)] ≈ S[x(t)] + 1
2

∫
dt
∫
dτ h(t) δ2S

δx(t)δx(τ)h(τ) .

With the Gaussian integral in mind, we set

(h(t), Ah(t)) = 1
2

∫
dt
∫
dτ h(t) δ2S

δx(t)δx(τ)h(τ)

2f(x) ≈ f(x0) + f ′(x0)(x− x0) + f ′′(x0)(x− x0)2 leads to f(x0 + ε) ≈ f(x0) + f ′(x0)ε+ f ′′(x0)ε2.
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and plug in into the path integral:∫
D[q(t)]e i~S[q(t)] ≈

∫
D[h(t)]e i~ (S[x(t)]+(h(t),Ah(t)) )

= e
i
~S[x(t)]

∫
D[h(t)]e i~ (h(t),Ah(t))

= e
i
~S[x(t)]

∫
D[h(t)]e

i
~

~
−iπ (h(t),−iπ~ Ah(t))

= e
i
~S[x(t)] 1√

det(πA/i~)
.

6.2. Functional integral for fermions

This section is greatly inspired by [Zir14, V Functional integrals for fermion and bosons]
and [AS10, 4 Functional field integral].

6.2.1. Berezin integral in finite dimensions

Let ∧(V ∗) be the exterior algebra of the n-dimensional C dual vector space V ∗ with dual
basis ξµ. The generators ξµ are called Grassmann variables in the physical literature.
By lemma D.2.10 we know that elements of the exterior algebra are polynomials of the
form:

f = f (0) +
∑
µ

f (1)
µ ξµ +

∑
µ<ν

f (2)
µν ξ

µξν + . . .+ f (n)
µ1...µnξ

µ1 . . . ξµn ,

where we have omitted the wedge product, as is common in the literature.

Definition 6.2.1.
The partial Grassmann derivative with respect to a generator ξµ is defined
linearly by

∂

∂ξµ
1 = 0 and ∂

∂ξµ
ξν = δνµ.

Lemma 6.2.2.
Let {ξµ} be the basis to which {ξµ} is dual, then

∂

∂ξµ
= ξµy ,

where ξµy denotes the interior product.

Proof 6.2.3.
The proof is immediate.
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Corollary 6.2.4.
The partial Grassmann derivative is an anti derivative, i.e.

∂

∂ξµ
(fg) =

(
∂

∂ξµ
f

)
g + (−1)deg(f)f

(
∂

∂ξµ
g

)
.

Proof 6.2.5.
This is a property of the interior product.

Corollary 6.2.6.
The partial Grassmann derivatives anti commute:

∂

∂ξµ
∂

∂ξν
= − ∂

∂ξν
∂

∂ξµ
→ ∂2

∂ξµ∂ξµ
= 0 .

Proof 6.2.7.
This is a property of the interior product.

Lemma 6.2.8.
Let ξµ = ∑

ν A
µ
νζ

ν, then the partial Grassmann derivative transform as the usual
partial derivative:

∂

∂ξµ
=
∑
ν

(A−1)νµ
∂

∂ζν
.

Proof 6.2.9.
For the bidual basis it holds that ξµ = ∑

ν(A−1)νµζν . Plugging that means:

∂

∂ξµ
= ξµy =

∑
ν

(A−1)νµ(ζνy) =
∑
ν

(A−1)νµ
∂

∂ζν
.

So far, the partial Grassmann derivative behaves like a derivative, as the name suggests.
Apart from differentiation, the partial Grassmann derivatives can be used to integrate,
in a broader sense, on the exterior algebra.

Definition 6.2.10.
Let f ∈ ∧(V ∗) be a polynomial in the exterior algebra, then the Berezin
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integral
∫
∧ f dξ

n is defined by∫
∧
f dξn ≡ ∂n

∂ξn . . . ∂ξ1 f .

Remark 6.2.11.
There are different notations for Berezin integrals. Among the most common ones
is
∫
F f . The defining operator ∂n

∂ξn...∂ξ1 is called integration form. Its ordering
determines the Berezin integral.

For the Berezin integral there is a more general transformation theorem than lemma
6.2.8:

Theorem 6.2.12 (Berezin change of odd variables).
Let ϕ : ∧(V ∗)→ ∧(V ∗) be an isomorphism and ξµ = ϕµ(ζ).3Then the formula
for the change of variables is:

∫
∧
f(ξ) dξn =

∫
∧
f(ϕ(ζ)) det−1

(
∂

∂ζµ
ϕν(ζ)

)
dζn .

Since the base space in an algebra, there is a well defined product, which allows to
define the exponential function. This also holds true for ∧(V ⊕ V ∗). Thus we can
define:

exp(p) =
∑
n

pn

n! , for p ∈
∧

(V ⊕ V ∗) .

Since the dimension of V is finite, the sum terminates after finitely many terms.

Lemma 6.2.13.
Let Aµν be the coefficients of A ∈ End(V ) for the basis {ξµ} of V and let {ζν} be
a basis of V ∗, then: ∫

∧
exp (Aµνζνξµ) d(ξ, ζ)n = det(A) ,

where the integration form is ∏n
µ=1

∂2

∂ξµ∂ζµ
.

Proof 6.2.14.
Let n be the dimension of V . By the definition of Berezin’s integral, only the terms

3The index is to be understood as reference to the basis element of
∧

(V ∗) regarded as vector space.
This includes ϕµ1...µk(ζ) for µ1 < . . . < µk.
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of length 2n, i.e. terms of power n, where all generators appear, do not yield zero:
∫
∧

exp(Aµνζνξµ) d(ξ, ζ)n

= 1
n!

∫
∧
(Aµνζνξµ)n d(ξ, ζ)n

= 1
n!

∫
∧

∑
π,π′∈Σn

A
π(1)

π′(1) . . . A
π(n)

π′(n)ζ
π′(1)ξπ(1) . . . ζ

π′(1)ξπ(n) d(ξ, ζ)n

Since the Berezin integral is actually a derivative, that yields 1 for properly ordered
generators, we use the anti commutation relations to find:

∫
∧

exp(Aµνζνξµ) d(ξ, ζ)n = 1
n!

∑
π,π′∈Σn

sgn(π)sgn(π′)Aπ(1)
π′(1) . . . A

π(n)
π′(n)

=
∑
π∈Σn

sgn(π)Aπ(1)
1 . . . A

π(n)
n = det(A) .

Here, the reordering yields to sgn(τ), where τ ∈ Σ2n. Yet the splitting V ⊕ V ∗ is
kept, such that τ can be written as product τ = π ◦ π′ for π, π′ ∈ Σn.

Corollary 6.2.15.
For later use, we also show that:∫

∧
exp (−Aµνζνξµ) d(ζ, ξ)n = det(A) .

Proof 6.2.16.

∫
∧

exp (−Aµνζνξµ) d(ζ, ξ)n =
∏
µ

∂2

∂ζµ∂ξµ
(−Aµνζνξµ)n

= (−1)n
∏
µ

∂2

∂ζµ∂ξµ
(Aµνζνξµ)n

= (−1)n(−1)n
∏
µ

∂2

∂ξµ∂ζµ
(Aµνζνξµ)n

=
∫
∧

exp (Aµνζνξµ) d(ξ, ζ)n = det(A) .

This lemma allows to define the Determinant of a matrix. In a different context, the
Gaussian Berezin integral can also be used to define another matrix invariant. To be
more precise, an invariant of a skew symmetric bilinear form, that can be identified
with a matrix.
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Definition 6.2.17.
Let A : V ⊗ V → C be a skew symmetric bilinear form. Choosing a dual basis
{ξµ} of V ∗, the bilinear form can be written as Aµνξµ ⊗ ξν , with Aµν = −Aµν .
Then, the Pfaffian of A is defined by

Pf(A) =
∫
∧

exp(Aµνξµξν) dξn ,

with the standard integration form ∂n

∂ξn...∂ξ1 .

Corollary 6.2.18.
If dim(V ) = n is odd, then Pf(A) = 0.

Proof 6.2.19.
The terms of exp(Aµνξµξν) that are non-zero under Berezin integration have to
have length n. Yet since (Aµνξµξν)k yields only terms of even length but n is odd,
the only possible result of Berezin integration is 0.

The Pfaffian is closely related to the determinant. Let I : V ∗ → V be the isomorphism
induced by the choice of bases (in the case of euclidean vector spaces it becomes
canonical). Then the associated matrix of A = Aµνξ

µ ⊗ ξν is

Ã = (I ⊗ 1)(A) = AµνI(ξµ)⊗ ξν =
∑
µ,ν

Aµνξµ ⊗ ξν ≡ Ãµνξµ ⊗ ξν = Ã .

Theorem 6.2.20 (Cayley’s theorem).
If dim(V ) = n is even, then Pf(A)2 = det(Ã).

6.2.2. Fermionic coherent states

While coherent states in the bosonic case are discussed quite early in quantum mechanics
(in terms of excitations), cohernet states of fermions pose much more difficulty. In
the many particle case, a fermionic coherent state would need to fulfill the relation
cj|ξ〉 = ξi. However, because of the anti commuting annihilation operators, ξi cannot
be a number:

cicj|ξ〉 = ξjci|ξ〉 = ξjξi|ξ〉
!= −cjci|ξ〉 = ξiξj|ξ〉 ⇒ ξiξj

?= −ξjξi.

To formulate a theory of fermionic coherent states, we loosen our restrictions from
the previous subsection and allow for possibly infinite dimensional spaces V and V ∗.
We consider creation and annihilation operators c†i , cj ∈ Cl(H⊕H∗) and Grassmann
generators ξi, ξj ∈

∧(V ⊕ V ∗). The notation for ξi ∈ H∗ is motivated by the following
definition:
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Definition 6.2.21.
The complex conjugation in the exterior algebra is defined by ξi 7→ ξi and
ξi 7→ ξi ≡ ξi, such that:

αξi + βξj = αξi + βξj and ξiξj = ξiξj .

Corollary 6.2.22.
It holds that ∫

∧
d(ξ, ξ)n exp

(
−
∑
µ

ξµξµ

)
= 1 ,

where we have chosen the more conventional integration form
∫
∧ d(ξ, ξ)n =∏

j
∂2

∂ξj∂ξj
.

Proof 6.2.23.
This is a special case of corollary 6.2.15 using Aµν = δµν .

Furthermore, we make the following convention:

Grassmann generators and creation /annihilation operators
anticommute, i.e. ξic†j = −c†jξi etc. .

Before we continue with the Berezin integral, we consider some important states, called
coherent states:

Definition 6.2.24.
The states |ξ〉 defined by

|ξ〉 = exp
(
−
∑
µ

ξµc
†
µ

)
|0〉 ≡ exp(ξ)|0〉

are called fermionic coherent states, where we defined ξ = ∑
µ c
†
µξµ. Further-

more we define ξ = ∑
µ cµξµ

For the adjoint state we find:

〈ξ| = |ξ〉† = |0〉† exp(ξ)† = 〈0| exp
(∑

µ

c†µξµ

)† = 〈0| exp
(∑

µ

ξµcµ

)

= 〈0| exp(−ξ) .

Before we show the properties of coherent states, we need a statement about the
exponential function.
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Corollary 6.2.25.
The following commutator relations hold:

i) [c†µ, c†νξν ] = 0 , [cµ, c†νξν ] = δµνξν , [c†µ, cνξν ] = δµνξν.

ii) [ξµ, c†νξν ] = 0 , [ξµ, c†νξν ] = 0 , [ξµ, cνξν ] = 0 , [ξµ, cνξν ] = 0 .

Proof 6.2.26.

i) The first equation hold because of anti-commutativity and two exchanges. For
the second and third commutator, we calculate:

[cµ, c†νξν ] = cµc
†
νξν − c†νξνcµ = (cµc†ν + c†νcµ)ξν = δµνξν .

[c†µ, cνξν ] = c†µcνξν − cνξνc†µ = (c†µcν + cνc
†
µ)ξν = δµνξν

ii) All commutators vanish, since there are always two exchanges.

Lemma 6.2.27.
It holds that:

[ξ, ζ] =
∑
µ

ζµξµ , [ξ, ζ] = 0 = [ξ, ζ] ,

and that higher commutators vanish.

Proof 6.2.28.
We calculate the following commutators, using the anti-commutator relations:

−[ξ, ζ] = [ξ,−ζ] =
[∑
µ

c†µξµ ,
∑
ρ

ζρcρ

]
=
∑
µ,ρ

c†µξµζρcρ − ζρcρc†µξµ

= −
∑
µ,ρ

ζρ(c†µcρ + cρc
†
µ)ξµ

= −
∑
µ,ρ

ζρ δµρ ξµ = −
∑
µ

ζµξµ ,

For the remaining commutators:

[c†µξµ, c†ηζη] = c†µξµc
†
ηζη − c†ηζηc†µξµ = c†µξµc

†
ηζη − c†µξµc†ηζη = 0

⇒ [ξ, ζ] =
[∑
µ

c†µξµ ,
∑
η

c†ηζη

]
= 0

and similarly [ξ, ζ] =
[∑
ν

ξνcν ,
∑
ρ

ζρcρ

]
= 0 .

Higher commutators vanish, because of corollary 6.2.25.
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Lemma 6.2.29.
It holds that exp

(∑
µ

c†µξµ

)
=
∏
µ

(1 + c†µξµ).

Proof 6.2.30.
Because the variable pairs c†µξµ commute, we can write

exp
∑
µ6=ν

c†µξµ + c†νξν

 = exp
(∑

µ

c†µξµ

)
exp

(
c†νξν

)
.

For the case n = 1 it is clear that exp
(
c†µξµ

)
= (1 + c†µξµ).4Because of the

factorization of exponential functions above, the induction is fairly easy:

exp
∑
µ 6=ν

c†µξµ + c†νξν

 = exp
(∑

µ

c†µξµ

)
exp

(
c†νξν

)
=
∏
µ6=ν

(1 + c†µξµ)(1 + c†νξν) =
∏
µ

(1 + c†µξµ) .

Lemma 6.2.31.
Fermionic coherent states have the following properties:

i) cµ|ξ〉 = ξµ|ξ〉 ii) c†ν |ξ〉 = − ∂

∂ξν
|ξ + c†νξν〉

iii) 〈ζ|ξ〉 = exp
(∑

µ

ζµξµ

)
.

Proof 6.2.32.

i) For the first property we observe for a coherent state |�µ〉 not containing µ:

cµ(1− ξµc†µ)|�µ〉 = −cµξµc†µ|�µ〉 = ξµcµc
†
µ|�µ〉 = ξµ|�µ〉 ,

ξ2
µ = 0 ⇒ ξµ|�µ〉 = ξµ(1− ξµc†µ)|�µ〉

Using the product representation of the exponential function yields:

cµ|ξ〉 = cµ exp
(∑

ν

c†νξν

)
|0〉 =

cµ
∏
ν

(1− ξνc†ν)|0〉 = cµ(1− ξµc†µ)
∏
ν 6=µ

(1− ξνc†ν)|0〉

4Although the variable pairs c†µξµ commute, they still vanish upon quadration. This is also the
difference to the exponential function in symmetric variables, where the case for n = 1 is different.
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= ξµ
∏
ν 6=µ

(1− ξνc†ν)|0〉 = ξµ(1− ξµc†µ)
∏
ν 6=µ

(1− ξνc†ν)|0〉

= . . . = ξµ|ξ〉 .

ii) For the second property we use:

− ∂

∂ξν
(1 + c†νξν) = c†ν

and the commutativity of variable pairs from corollary 6.2.25:

− ∂

∂ξν
exp(ξ + c†νξν) = − ∂

∂ξν
(1 + c†νξν)

∏
µ 6=ν

(1 + c†µξµ)

= c†ν
∏
µ6=ν

(1 + c†µξµ) = c†ν exp(ξ) .

iii) The last property is a direct calculation using

〈0|(1 + ζνcν)(1 + c†µξµ)|0〉 = 〈0|(1 + c†µξµ + ζνcν + ζνcνc
†
µξµ)|0〉

= 〈0|1 + ζνδµνξµ|0〉 .

Thus we find:

〈ζ|ξ〉 =
〈

0
∣∣∣∣∣∏
µ,ν

(1 + ζνcν)(1 + c†µξµ)
∣∣∣∣∣ 0
〉

=
〈

0
∣∣∣∣∣∏
µ,ν

1 + ζνδµνξµ

∣∣∣∣∣ 0
〉

=
〈

0
∣∣∣∣∣∏
µ

1 + ζµξµ

∣∣∣∣∣ 0
〉

= exp
(∑

µ

ζµξµ

)
.

Theorem 6.2.33.
The identity operator on the Fock space can be expressed as follows:

1 =
∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
|ξ〉〈ξ| .

Proof 6.2.34.
We consider the Hilbert basis of the Fock space:

|n1, . . .〉 = (c†1)n1 . . . (c†k)nk . . . |0〉 .

Then by definition and lemma 6.2.31 the following holds:

〈m1, . . . |n1, . . .〉 =
∏
j

δmjnj ,

〈m1, . . . |ξ〉 = 〈0| . . . ξm2
2 ξm1

1 |ξ〉 = . . . ξm1
1 ,
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〈ξ|n1, . . .〉 = 〈ξ|ξn1
1 . . . |0〉 = ξ

n1
1 . . . .

Next we consider the operator O =
∫
∧ d(ξ, ξ) exp

(
−∑µ ξµξµ

)
|ξ〉〈ξ|:

〈m1, . . . |O|n1, . . .〉 =
〈
m1, . . .

∣∣∣∣∣
∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
|ξ〉〈ξ|

∣∣∣∣∣n1, . . .

〉
.

Since each term of exp
(
−∑µ ξµξµ

)
is even in the total number of generators,

it commutes with 〈m1, . . . |. Furthermore, (ξj)nj and (ξj)mj commute with the
coherent states, as well as exp

(
−∑µ ξµξµ

)
, for the same reason. Hence:

〈m1, . . . |O|n1, . . .〉 =
∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
〈m1, . . . |ξ〉〈ξ|n1, . . .〉

=
∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
. . . ξm1

1 ξ
n1
1 . . .

=
∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
ξm1

1 ξ
n1
1 ξ

m2
2 ξ

n2
2 . . . ,

where we exchanged the order in the last line (always an even number of exchanges).
Furthermore:

∫
∧
d(ξ, ξ)k exp

(
−
∑
µ

ξµξµ

)
ξm1

1 ξ
n1
1 ξ

m2
2 ξ

n2
2 . . .

=
∫
∧
d(ξ, ξ)k

(
−
∑
µ

ξµξµ

)k
ξm1

1 ξ
n1
1 ξ

m2
2 ξ

n2
2 . . .

=
∫
∧
d(ξ, ξ)k

(
−
∑
µ

ξµξµ

)
(−1)kξm1

1 ξ
n1
1 ξ

m2
2 ξ

n2
2 . . .

=
∫
∧
d(ξ, ξ)k

(
−
∑
µ

ξµξµ

)
ξ
n1
1 ξ

m1
1 ξ

n2
2 ξ

m2
2 . . .

⇒ 〈m1, . . . |O|n1, . . .〉 =
∫
∧
d(ξ, ξ)

(
−
∑
µ

ξµξµ

)
ξ
n1
1 ξ

m1
1 ξ

n2
2 ξ

m2
2 . . . .

Assuming at least for one j, that mj 6= nj , since exp
(∑

µ ξµξµ
)
consists of generator

pairs, there is no term containing all generators (needed for the Berezin integral),
since ξj has no “partner” ξj or vice versa. Thus we can assume mj = nj for all
j. Since all generator pairs commute, the terms of proper length can always be
ordered, such that

〈m1, . . . |O|n1, . . .〉 =
∏
j

δmjnj = 〈m1, . . . |n1, . . .〉 .
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Lemma 6.2.35.
Let |ψ〉 and |ψ〉 be states, then it holds that:

∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
〈ψ|ξ〉〈ξ|φ〉

=
∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
〈−ξ|φ〉〈ψ|ξ〉

=
∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
〈ξ|φ〉〈ψ| − ξ〉 .

Proof 6.2.36.
Let |n1, . . .〉 denote an arbitrary Fock space Hilbert base state. By linearity5, we
only need to consider 〈m1, . . . |ξ〉〈ξ|n1, . . .〉. To keep the notation short, we define∫
≡
∫
∧ d(ξ, ξ) exp

(
−∑µ ξµξµ

)
in this proof. Using the proof of theorem 6.2.33 we

find: ∫
〈m1, . . . |ξ〉〈ξ|n1, . . .〉 =

∫
. . . ξm1

1 ξ
n1
1 . . . =

∫ ∏
j

δmjnj . . . ξ
m1
1 ξ

n1
1 . . .

=
∫
. . . ξn1

1 ξ
n1
1 . . . .

If ξn1
1 . . . is of even length, so is . . . ξn1

1 , such that ξn1
1 . . . = (−ξ)n1

1 . . . and thus:

. . . ξn1
1 ξ

n1
1 . . . = ξ

n1
1 . . . . . . ξn1

1 = (−ξ)n1
1 . . . . . . ξn1

1 .

Similarly for odd length, ξn1
1 . . . = −((−ξ)n1

1 . . .) and:

. . . ξn1
1 ξ

n1
1 . . . = −(ξn1

1 . . . . . . ξn1
1 ) = (−ξ)n1

1 . . . . . . ξn1
1 .

So in general we see that:∫
〈m1, . . . |ξ〉〈ξ|n1, . . .〉 =

∫
. . . ξn1

1 ξ
n1
1 . . . =

∫
(−ξ)n1

1 . . . . . . ξn1
1

= . . . =
∫
〈−ξ|n1, . . .〉〈m1, . . . |ξ〉 .

The second equality can be shown in the same way.

6.2.3. Functional integral for fermions: The grand canonical
partition function

To illustrate the functional integral for fermions, we consider the grand canonical
partition function. As a reminder, in classical statistical mechanics, the grand canonical

5assumed to exchange with Berezin integration by continuity. Though this lemma is used for the
trace only, where one could defined the trace naively by allowing only the occupation number basis,
the continuity still would be needed for the calculations.
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partition function is given by

Z =
∑
r

e−β(Er−µNr) , with β = kBT .

In elementary quantum mechanics, we would define an extended Hamilton operator H
with normalized eigen states |r〉, such that H|r〉 = (Er − µNr), and find that:

Z =
∑
r

e−β(Er−µNr) =
∑
r

e−β(Er−µNr)〈r|r〉 =
∑
r

〈r|e−β(Er−µNr)|r〉

=
∑
r

〈r|e−βH |r〉 = Tr(e−βH) .

This is taken as general definition of the partition function, such that we want to
develop a functional integral representation for Z = Tr(e−βH). We assume, that H is
even in the number of creation/annihilation operators6, and that it is already normal
ordered, otherwise we could consider :H: instead. In case of a fermionic system, with
an arbitrary ordered Hilbert basis |n〉, using theorem 6.2.33 and lemma 6.2.35, where
〈ψ| = 〈n| and |φ〉 = e−βH |n〉 we calculate:

Z = Tr(e−βH)

=
∑
n

〈n|e−βH |n〉 =
∑
n

∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
〈n|ξ〉〈ξ|e−βH |n〉

=
∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)∑
n

〈ξ|e−βH |n〉〈n| − ξ〉

=
∫
∧
d(ξ, ξ) exp

(
−
∑
µ

ξµξµ

)
〈ξ|e−βH | − ξ〉 .

In the last line we used the completeness relation ∑
n |n〉〈n| = 1. Having a theory

of fields in the continuum limit in mind and recalling the general definition of field
operators, being an infinite linear combination of operators, we understand ξ and ξ as
“vectors”, with ξξ = ∑

µ ξµξµ. Following the general procedure, we split the exponential
and insert completeness relations:

Z =
∫
∧
d(ξ1, ξ1) . . .

∫
∧
d(ξM , ξM) exp(−ξMξM) . . . exp(−ξ1ξ1)

〈ξM |e−
1
M
βH |ξM−1〉〈ξM−1|e−

1
M
βH |ξM−2〉 . . . 〈ξ1|e−

1
M
βH | − ξM〉

=
∫
∧
d(ξ1, ξ1) . . .

∫
∧
d(ξM , ξM) exp

− M∑
j=1

ξjξj


〈ξM |e−

1
M
βH |ξM−1〉〈ξM−1|e−

1
M
βH |ξM−2〉 . . . 〈ξ2|e−

1
M
βH | − ξ1〉 .

In the second line, we used that pairs of Grassmann generators commute. Next we
consider the essential building block 〈ξ|e− 1

M
βH |ζ〉. We will expand the exponential up

to the first order, as we intend to set M → ∞. Since H is normal ordered, we can
exchange creation/annihilation operators with the corresponding Grassmann generators,

6Which is true most of the times.
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because of lemma 6.2.31. Then, because of evenness w.r.t. the number of generator, we
can use commutation with fermionic coherent states:

〈ξ|e−
1
M
βH |ζ〉 ≈ 〈ξ|1− 1

M
βH(c†, c)|ζ〉 = 〈ξ|1− 1

M
βH(ξ, ζ)|ζ〉

= 〈ξ|ζ〉(1− 1
M
βH(ξ, ζ)) = eξζ(1− 1

M
βH(ξ, ζ))

≈ eξζe−
1
M
βH(ξ,ζ) = eξζ−

1
M
βH(ξ,ζ) .

Plugging in these results and demanding the condition −ξM = ξ1, we find7:

Z =
∫
∧
d(ξ1, ξ1) . . .

∫
∧
d(ξM , ξM) exp

 M∑
j=2

(−ξjξj + ξjξj−1) − 1
M
βH(ξj, ξj−1)


δ≡ β

M=
∫
∧
d(ξ1, ξ1) . . .

∫
∧
d(ξM , ξM) exp

−δ M∑
j=2

ξj
ξj − ξj−1

δ
+H(ξj, ξj−1)

 .

Assuming the continuum limit M →∞ to exist, which leads to δ → 0, we understand
ξj → ψ(j) and ξj → ψ(j) as continuous fields. Also:∫

∧
d(ξ1, ξ1) . . .

∫
∧
d(ξM , ξM) −→

∫
D(ψ, ψ) ,

δ
M∑
j=1
−→

∫ β

0
dτ and ξj

ξj − ξj−1

δ
−→ ψ∂τψ .

Thus we have found a field integral for the partition function:

Z =
∫
D(ψ, ψ) e−

∫ β
0 dτ ψ(τ)∂τψ(τ)+H(ψ(τ),ψ(τ)) .

The condition −ξM = ξ1 becomes a boundary condition:

−ψ(β) = ψ(0) and − ψ(β) = ψ(0) .

6.3. Functional integral for bosons

As the section 6.2, this is greatly inspired by [Zir14, V Functional integrals for fermion
and bosons] and [AS10, 4 Functional field integral].

6.3.1. Coherent states for bosons

While fermionic coherent states needed a new concept of “numbers” to realize the
concept of coherent states, bosonic coherent states arise more natural.

Definition 6.3.1.

7Because of the commutativity of Grassmann pairs, we can use the usual power law for the exponential
functions.
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Let φj ∈ C. The bosonic coherent state |φ〉 is defined by

|φ〉 = exp
∑

j

φja
†
j

 |0〉 .
As the name suggests, bosonic coherent states have the same properties as their
fermionic counterparts. However, since the bosonic theory is generally symmetric, while
the fermionic one is generally antisymmetric, the details differ. For example, adopting
the previous convention φ ≡ ∑j φja

†
j, the bra-state becomes:

〈φ| = |φ〉† = 〈0| exp(φ†) = 〈0| exp
∑

j

φjaj

 .

Lemma 6.3.2.
Bosonic coherent states have the following properties:

i) aµ|φ〉 = φµ|φ〉 ii) a†ν |φ〉 = ∂

∂φν
|φ+ a†νφν〉

iii) 〈θ|φ〉 = exp
(∑

µ

θµφµ

)
.

Proof 6.3.3.

i) For the first property, we observe. that aµ and φν commute in general, and
aµ and a†ν if µ 6= ν. Since the a†ν commute with each other, we can order
exp(φ). For that reason, if φ′ = ∑

ν 6=µ φνa
†
ν , i.e. φ = φµa

†
µ + φ′, it holds that

exp(φ) = exp(φ′) exp(φµa†µ). Also because of aµ exp(φ′) = exp(φ′)aµ, we only
need to consider a exp(φa†)|0〉. Following the footnote of [AS10, p. 159], we
show that [a, (a†)n] = n · (a†)n−1:

[a, (a†)n] = a(a†)n − (a†)na = (a(a†)n−1 − (a†)n−1a)a† + (a†)n−1

= [a, (a†)n−1]a† + (a†)n−1 = (n− 1)(a†)n−1a† + (a†)n−1

= n · (a†)n−1 .

With this result, and a|0〉 = 0 we conclude:

a exp(φa†)|0〉 = a exp(φa†)|0〉 − exp(φa†)a|0〉 = [a, exp(φa†)]|0〉

=
∑
n

φn

n! [a, (a†)n] |0〉 =
∑
n

φn

n! n · (a
†)n−1|0〉

= φ
∑
n−1

φn−1(a†)n−1

(n− 1)! |0〉 = φ exp(φa†)|0〉 .
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ii) For the second property, we observe that:

a† exp(φa†) = a†
∑
n

φn(a†)n
n! =

∑
n

φn(a†)n+1

n!

=
∑
n

1
n+ 1

∂

∂φ

φn+1(a†)n+1

n! = ∂

∂φ

∑
n

φn+1(a†)n+1

(n+ 1)!

= ∂

∂φ

∑
n

φn+1(a†)n+1

(n+ 1)! + ∂

∂φ
1 = ∂

∂φ

∑
n

(
φn+1(a†)n+1

(n+ 1)! + 1
)

= ∂

∂φ

∑
n+1

φn+1(a†)n+1

(n+ 1)! = ∂

∂φ
exp(φa†) .

iii) We follow the proof of [AS10, p. 159]. From the first property we infer that
exp(∑µ zµaµ)|φ〉 = exp(∑µ zµφµ)|φ〉 for arbitrary zµ ∈ C. Thus:

〈θ|φ〉 = 〈0| exp
(∑

µ

θµaµ

)
|φ〉 = 〈0| exp

(∑
µ

θµφµ

)
|φ〉

= exp
(∑

µ

θµφµ

)
〈0||φ〉 = exp

(∑
µ

θµφµ

)
.

Theorem 6.3.4.
The identity operator on the Fock space can be expressed as follows:

1 =
∫
d(φ, φ) exp

(
−
∑
µ

φµφµ

)
|φ〉〈φ| ,

where d(φ, φ) = ∏
j

1
π
dφj dφj.

Proof 6.3.5.
This proof follows [AS10, p. 160].

The representation of W(H ⊕H∗) on S(H) is irreducible, such that we want
to use a result from Schur’s lemma, corollary D.1.10. We need to show that
X =

∫
∧ d(φ, φ) exp

(
−∑µ φµφµ

)
|φ〉〈φ| commutes with every a†µ and aµ.

a†µX =
∫
d(φ, φ) exp

(
−
∑
µ

φµφµ

)
a†µ|φ〉〈φ|

=
∫
d(φ, φ)

(
a†µ|φ〉

)
〈φ| exp

(
−
∑
µ

φµφµ

)

=
∫
d(φ, φ)

(
∂φµ |φ〉

)
〈φ| exp

(
−
∑
µ

φµφµ

)
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by parts= −
∫
d(φ, φ) |φ〉〈φ|∂φµ exp

(
−
∑
µ

φµφµ

)

= −
∫
d(φ, φ) exp

(
−
∑
µ

φµφµ

)
a†µ|φ〉〈φ|(−φµ)

=
∫
d(φ, φ) exp

(
−
∑
µ

φµφµ

)
a†µ|φ〉〈φ|a†µ = Xa†µ .

In the line where we used integration by parts, we used that 〈φ| = 〈0| exp(φ†) does
not depend on ∂φµ . The calculation for aµ is almost the same and can be found in
[AS10, p. 160]. From corollary D.1.10 we know that:

∫
d(φ, φ) exp

(
−
∑
µ

φµφµ

)
|φ〉〈φ| ∼ 1 .

To obtain the proportionality constant we consider 〈0|X|0〉, using corollary 6.1.5
for n = 2:

〈0|X|0〉 =
∫
d(φ, φ) exp

(
−
∑
µ

φµφµ

)
〈0|φ〉〈φ|0〉

=
∏
j

∫ 1
π
dφj dφj exp

(
−φjφj

)
= 1 .

This concludes the proof.

6.3.2. Functional integral for bosons: The grand canonical
partition function

The derivation is the same as for fermions, because of the similarity of the coherent
states. In fact, the derivation becomes easier because of commutativity. Some notable
difference are however:

Z =
∫
d(φ, φ) exp

(
−
∑
µ

φµφµ

)
〈φ|e−βH |+ φ〉 ,

leading to the condition φM = φ1. Thus in the continuum limit we obtain again:

Z =
∫
D(ψ, ψ) e−

∫ β
0 dτ ψ(τ)∂τψ(τ)+H(ψ(τ),ψ(τ)) ,

yet with the boundary conditions:

ψ(β) = ψ(0) and ψ(β) = ψ(0) .



Part III.

Mathematical methods

Used throughout all of these notes, the mathematical concepts introduced
in this part could be equally well at the beginning. The separation of the
mathematical tools and their application to physical problems is a decision of
the author, to provide rigor when needed at the cost of a certain separation,
that would not be possible in a lecture course. That said, this part is not,
and does not intend to be, as complete or rigorous as detailed mathematical
textbooks, as it spans too wide a range of mathematical fields. However it can
serve as some glimpse into the proper mathematical theory.



A
Hilbert sapces and Dirac-notation
The foundation of axiomatic quantum mechanics are Hilbert-spaces and operators. In this chapter
we cover the basic definitions and properties of Hilbert spaces, operators and transformations.
Furthermore the commonly used Dirac notation gets introduced (after the mathematical objects
behind the notation have been defined).

A.1. Hilbert spaces

Loosely speaking, Hilbert spaces are a generalization of Rn for infinite dimensional n.
This section mostly follows [KW06, section 10.4].

Definition A.1.1.
Let (H, ‖ · ‖) be a normed vector space. If every Cauchy sequence is convergent
with respect to the norm ‖ · ‖, then the vector space is called Banach space.
If there is a hermitian scalar product 〈·, ·〉 on H and every Cauchy sequence
converges with respect to the 〈·, ·〉-induced norm, the tuple (H, 〈·, ·〉) is called
Hilbert space.

A hermitian scalar product is a map 〈·, ·〉 : H × H → C that satisfies the following
properties:

Sesquilinearity:
〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 , 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈αx, y〉 = α · 〈x, y〉 for
all x, y, z ∈ H and α ∈ C.

Hermitian symmetry:
〈x, y〉 = 〈y, x〉 for all x, y ∈ H.

Positve definition:
〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0 for all x ∈ H.

The 〈·, ·〉-induced norm is defined as usual by |x| =
√
〈x, x〉. The hermitian scalar

product also induces a natural map in the dual space H∗ = Hom(H → C):

` : H −→ H∗, x 7−→ `x .

This map is bijective, yet not a homomorphism due to the hermitian symmetry, and is
defined by

`x(y) = 〈x, y〉 ∀ x, y ∈ H .

Definition A.1.2 (Dirac notation).
Using Dirac notation, elements of H are denoted by |x〉 and are called ket-
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vectors. Elements of the dual space ϑ ∈ H∗ are denoted by 〈ϑ| and are called
bra-vectors.

This notation convention leads to an illustrative notation for the dual pairing of `x ∈ H∗
and y ∈ H:

`x(y) ≡ 〈x|(|y〉) =: 〈x|y〉 = 〈x, y〉 .

The Dirac notation does not by chance resemble the scalar product, one of the fun-
damental objects in quantum mechanics. Hence the following notation convention is
hardly surprising:

|α · x+ β · y〉 := α · |x〉+ β · |y〉 ∀ x, y ∈ H, α, β ∈ C .

The hermitian symmetry has the consequence, that bra-vectors behave slightly differ-
ently:

〈αx+ βy| = α〈x|+ β〈y| .

Definition A.1.3.
A Hilbert basis in an infinite-dimensional Hilbert space H is a sequence
(xn)n∈N0 ∈ H, that satisfies the following properties:

i) 〈xn, xm〉 = δm,n.

ii) Let f ∈ H and 〈xn, f〉 = 0 for all n ∈ N0, then f = 0 holds.

In the finite-dimensional case Hilbert bases are the same as bases. However, in the
infinite-dimensional case these concepts are related, but differ considerably. That is,
theorems of linear algebra do not carry over, at least not with some effort to show that
they do.

Lemma A.1.4 (Continuity of scalar products).
Let H be a Hilbert space, the following propositions are fulfilled:

i) Let (xn), (yn) be convergent sequences, then〈
lim
n→∞

xn, lim
n→∞

yn

〉
= lim

n→∞
〈xn, yn〉 .

ii) Let ∑n∈N0 xnbe a convergent series, then〈∑
n∈N0

xn, y

〉
=
∑
n∈N0

〈xn, y〉 ∀ y ∈ H .

Proof A.1.5.
Using the Cauchy-Schwartz inequality shows that

|〈xn, yn〉 − 〈x, y〉| = |〈xn, yn − y〉+ 〈xn − x, yn〉| ≤ |xn| · |yn − y|+ |yn| · |xn − x| .
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The right hand side is a zero sequence and the inequality shows the assertion. The
second property is trivial, since a series is just a special case of a sequence.

Lemma A.1.6 (Bessel inequality).
Let (xn) be an orthonormal sequence in H, i.e. 〈xn, xm〉 = δm,n, then the Bessel
inequality is satisfied: ∑

n∈N0

〈xn, f〉 ≤ |f | .

This lemma allows to prove essential properties of Hilbert bases, that also show how
they relate to orthonormal bases:

Theorem A.1.7.
Let (xn)n∈N0 be an orthonormal sequence in a Hilbert space H, then the following
properties are equivalent:

i) (xn) is a Hilbert basis.

ii) It holds that H = span{xn|n ∈ N0}.

iii) ∀ f ∈ H : f = ∑
n∈N0

xn · 〈xn, f〉.

iv) ∀ f, g ∈ H : 〈f, g〉 = ∑
n∈N0
〈f, xn〉 · 〈xn, g〉.

v) ∀ f ∈ H : |f |2 = ∑
n∈N0
〈xn, f〉2.

Due to their equivalence the properties (iii) and (iv) get summarized in the Dirac
notation by

1 =
∑
n∈N0

|xn〉〈xn| .

The previous theorem states, that this condition is equivalent to (xn) being a Hilbert
basis. The equation is commonly called Completeness relation in the physical
literature.

Remark A.1.8.
In the next section we will encounter operators. If the operator is bounded, limit
and operator may be exchanged, and thus operator and series as well:

A
∞∑
n=0

cn|n〉 = A lim
N→∞

N∑
n=0

cn|n〉 = lim
N→∞

A
N∑
n=0

cn|n〉

= lim
N→∞

N∑
n=0

cnA|n〉 =
∞∑
n=0

cnA|n〉 .

However, this cannot be done, if the operator is unbounded. Yet, for a Hilbert
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basis {|xn〉}, the last theorem (property iv and iii) allows to write:

〈φ|A|ψ〉 =
∑
n

〈φ|A|xn〉〈xn|ψ〉 = 〈φ|A
∑
n

|xn〉〈xn|ψ〉 ,

for any operator, without the need to exchange operator and series. For that
reason 1 = ∑

n∈N0
|xn〉〈xn| can be misleading.

A.2. Operators

Physically measurable quantities are represented by self adjoint operators in quantum
mechanics. Most of the definitions an theorems about operators can be found in [Wer11,
section II.1].

Definition A.2.1.
An operator T is a continuous map between Hilbert spaces, T : X → Y .

With point-wise addition and scalar multiplication, the space of operators is itself
a vector space Hom(X → Y ). A special subspace is the vector space of continuous
operators L(X → Y ). Continuity is one of the following equivalent conditions

Definition und Lemma A.2.2.
A linear map T is called continuous, if one (and thus all) of the following
conditions is fulfilled:

i) Let (xn) be a convergent sequence in X with lim
n→∞

xn = x. Then lim
n→∞

Txn =
Tx holds.

ii) ∀ x0 ∈ X ∀ε > 0 ∃ δ > 0: ‖x− x0‖X < δ
⇒ ‖Tx− Tx0‖Y < ε ∀x ∈ X .

iii) Let U ⊂ Y be open in Y , then T−1(U) ⊂ X is open in X.

Two essential properties of operators are:

Theorem A.2.3.

i) Let T : X → Y be a linear map between normed spaces, then the following
claims are equivalent:

• T is continuous on X.
• T is bounded, i.e. ∃ K ≥ 0: ‖Tx‖Y ≤ K · ‖x‖X ∀ x ∈ X.
• T is continuous in 0 ∈ X.

ii) Let D ⊂ X be a dense subspace of the normed space X, let Y be a Banach
space and T : D → Y a bounded operator. Then there is a continuous
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extension, i.e. a continuous operator T̂ : X → Y with T̂
∣∣∣
D

= T .

The equivalence of continuity and boundedness allows to define a norm on L(X → Y ):

Definition A.2.4.
The operator norm on L(X → Y ) is defined by

‖T‖Op := inf {K ≥ 0 | ‖Tx‖Y ≤ K · ‖x‖X ∀ x ∈ X} .

Alternative ways to define the operator norm are given in the next lemma:

Lemma A.2.5.
It holds that:

‖T‖Op = sup
x 6=0

‖Tx‖Y
‖x‖X

= sup
‖x‖X=1

‖Tx‖Y = sup
‖x‖X≤1

‖Tx‖Y .

For the properties of self adjoint operators we follow [Zir13] here. To define self adjoint
operators, the adjoint of an operator has to be defined first.

Definition A.2.6.
Let T be a bounded operator. The operator T † : Y → X is called the adjoint
operator of T , if

〈Tx, y〉Y = 〈x, T †y〉X ∀ x ∈ X, y ∈ Y .

For an unbounded dens operator T : D(T ) ⊂ X → Y the operator T † : D(T †) ⊂
Y → X, with D(T †) chosen maximally, is called formally adjoint operator,
if:

〈Tx, y〉Y = 〈x, T †y〉X ∀ x ∈ D(T ), y ∈ D(T †) .

Definition A.2.7.
Let T ∈ End(H), then T is called self adjoint/hermitian, if T † = T . The
operator T is called unitary, if:

〈Tx, Ty〉 = 〈x, y〉 ∀x, y ∈ H .

The completeness relation allows for a basis decomposition, with respect to a Hilbert
basis, of operators:

Ty =
∑
n∈N0

xn · 〈xn, T y〉 =
∑
n∈N0

xn ·
〈
xn, T

∑
m∈N0

xm · 〈xm, y〉
〉

=
∑
m,n

xn · 〈xn, Txm〉 · 〈xm, y〉 =
∑
m,n

xn〈xn, Txm〉 · `xm(y) .
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Hence the operator can be expressed by

T =
∑
m,n

xn ⊗ (〈xn, Txm〉 · `xm) .

In the Dirac notation this reads

T =
∑
m,n

|xn〉〈xn|Txm〉〈xm| .

To shorten the notation further, if the Hilbert basis is understood, one simply writes
|n〉 := |xn〉. Another convention is to write

〈xn|Txm〉 = 〈xn|T |xm〉 .

Application of both conventions allows to recognize the completeness relation, that is
used in physics, more easily:

T =
∑
m,n

|n〉〈n|T |m〉〈m| =
(∑

n

|n〉〈n|
)
T

(∑
m

|m〉〈m|
)

„ = “ 1T1 .

The scalar products 〈n|T |m〉, calledmatrix elements, are the coefficients of the matrix
representation w.r.t the Hilbert basis.

Example A.2.8.
The matrix elements of the adjoint operator are:

〈m|A†|n〉 = 〈A†n|m〉 = 〈n|A|m〉 ⇒ A† = AT = A
T
.

For the special case A = |x〉〈y| the adjoint operator has a very simple form:

A† = |y〉〈x| .

Theorem A.2.9.

i) Eigen values of hermitian operators are real.

ii) The eigen vectors of different eigen values of hermitian operators are orthog-
onal.

Proof A.2.10.

i)
T |x〉 = λ|x〉 ⇒ 〈x|T |x〉 = λ〈x|x〉 = λ〈x|x〉 ⇒ λ = λ .

ii)
T |x〉 = λ|x〉 , T |y〉 = ϕ|x〉 ⇒ 〈x|T |y〉 = λ〈x|y〉 = ϕ〈x|y〉

λ 6=ϕ=⇒ 〈x|y〉 = 0 .
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A.3. Transformation of operators

In the same way, coordinate transformations can be realized passively, choosing a new
chart, or actively by using a diffeomorphism, the dynamics in quantum mechanics can
be incorporated in the vectors or in the operators. In the first case, the Hilbert vectors
depend on the time as parameters; in the second case, the operators depend on the
time. To describe the same physical situation the expectation values, i.e. ultimately
the matrix elements 〈x|T |y〉, have to stay invariant. Consider a transformation of the
vectors U : H → H, with |x′〉 = U |x〉 and |y′〉 = U |y〉. The condition for the equivalent
transformation of the operator T into T ′ thus is

〈x′|T |y′〉 = 〈x|T ′|y〉 .

Plugging in the definitions of |x′〉 and |y′〉 yields

〈x′|T |y′〉 = 〈Ux|T |Uy〉 = 〈x|U †TU |y〉 ⇒ T ′ = U †TU .

Example A.3.1 (Change of basis).
Let (|ψn〉) and (|ϕn〉) be two Hilbert bases of H. In the finite-dimensional case a
change of basis would mean to find coefficients cm,n, such that

|ψn〉 =
∑
m

cm,n|ϕm〉 .

The completeness relation allows to realize this equation by defining cm,n =
〈ϕm|ψn〉:

|ψn〉 = 1|ψn〉 =
∑
m

|ϕm〉〈ϕm|ψn〉 =
∑
m

〈ϕm|ψn〉 · |ϕm〉 .

In the finite-dimensional case, the coefficients cm,n are interpreted as a basis
transformation matrix C. This matrix is the matrix representation of the basis
change operator Ĉ in the basis (|ϕm〉). Let k be the dimension in the finite-
dimensional case, then it folows that

Ĉ|ϕn〉 = C


1
0
...

 =


c1,n
...
ck,n

 =
k∑

m=1
cm,n|ϕm〉 = |ψn〉 .

In the infinite-dimensional case the basis transformation operator can be defined
by

1) Ĉ|ϕn〉 = |ψn〉 2) 〈ϕm|Ĉ|ϕn〉 = cm,n = 〈ϕm|ψn〉 .
In the finite-dimensional as well as in the infinite-dimensional case, the operator
Ĉ is given by

Ĉ =
∑
k

|ψk〉〈ϕk| .

This means that the basis transformation operator is unitary:

Ĉ−1 =
∑
k

|ϕk〉〈ψk| = Ĉ† ⇔ 〈Ĉx, Ĉy〉 = 〈x, Ĉ†Ĉy〉 = 〈x, y〉 .
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Now, let T be an operator that shall be transformed with Ĉ. As before we use

T ′ = Ĉ†TĈ .

Since the basis transformation operator us unitary, we recover the transformation
law known from linear algebra:

T ′ = Ĉ†TĈ = Ĉ−1TĈ .



B
Generators, rotation groups and
vector operators
Rotations belong to the central symmetry transformation of physics. By Noether’s theorem the
angular momentum is tied to this symmetry transformation allowing to define angular momentum
in quantum mechanics. Furthermore, the rotation group allows to define vector like quantities by
analogies to R3. The mathematically foundation of rotation groups is the theory of Lie groups.

B.1. Lie groups and Lie algebras

In this section, we cover the basics of Lie group theory necessary to understand angular
momentum. This section is greatly inspired by [Sch09] and follows it closely in some
parts.

B.1.1. Definitions

Definition B.1.1.
A Lie group is a differentiable manifold G together with a group structure
◦ : G × G → G, such that the operation ◦ and the inversion g 7→ g−1 are
differentiable.

Let V be a vector space. A map [·, ·] : V × V → V is called Lie bracket if it satisfies
the following properties:

Bilinearity
[αx+ βy, z] = α[x, z] + β[y, z]

and [x, αy + βz] = α[x, y] + β[x, z] ∀ x, y, z ∈ V α, β ∈ K

Jacobi-identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀ x, y, z ∈ V

Alternation
[x, y] = −[y, x]

Definition B.1.2.
A vector space together with Lie bracket is called Lie algebra.

A common example is the vector space of endomorphisms End(H) together with the
commutator [A,B] = A ◦B −B ◦ A.
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Theorem B.1.3.
The general Baker-Campbell-Hausdorff formula, for arbitrary A,B reads

eAeB = eA+B+ 1
2 [A,B]+... ,

where we have only written the first two summands. The following summands
are combinations of [A,B]n and [B,A]n.

Lemma B.1.4 (Useful relations for commutators, [Sch13, p. 26]).
The commutator on End(H) has the following properties

i) [A,B] = 0 ⇒ eA · eB = eA+B.

ii) Let [A,B]m+1 = [A, [A,B]m] with [A,B]0 = B then

eABe−A =
∞∑
n=0

1
n! [A,B]n

iii) If [A,B]2 = [B,A]2 = 0, then the following holds: eA+B = eA · eB · e−
1
2 [A,B].

Remark B.1.5.
Property iii) is just a consequence of theorem B.1.3. If [A,B]2 = [B,A]2 = 0 then
all other higher commutators vanish and especially [A+B, [A,B]] = 0, allowing
to write eA+B+ 1

2 [A,B] = eA+Be
1
2 [A,B].

A very important property of the commutator is the existence of joint eigenvalues:

Theorem B.1.6 (Compatibility Theorem).
Let A,B ∈ End(H) be two operators. If [A,B] = 0, then there exists a joint eigen
basis (|ψn〉)n of A and B. Conversely, if there is a joint an eigen Hilbert basis of
A and B, then [A,B] = 0

Proof B.1.7.
The proof can be found on [Wik18]. Here we will not show the general case of
degenerate eigen values, but focus on the principle of the proof.

Let |ψn〉 be the single eigen vector of A for the eigenvalue an. Since by assumption
the operators commute, it holds that

A(B|ψn〉) = B(A|ψn〉) = an ·B|ψn〉 .

this means, that B|ψn〉 is also an eigen vector of A to the eigen value an. In the
non-degenerate case, the eigen space in one-dimensional. Hence there is a constant
bn, such that B|ψn〉 = bn · |ψn〉. Thus (|ψn〉)n defines an eigen Hilbert basis of B
with eigen values {bn}. In the degenerate case, the joint eigen basis needs further
construction, such that not all eigen bases of A are also eigen bases of B.
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Conversely, assume (|ψn〉)n to be a joint eigen Hilbert basis of A and B, then

AB|ψn〉 = bn · A|ψn〉 = bn · an · |ψn〉 = BA|ψn〉

⇒ (AB −BA)|ψn〉 = 0 .

Definition B.1.8.
Let g1 and g2 be two Lie algebras with Lie brackets [·, ·]1 and [·, ·]2. A Lie
algebra homomorphism is a linear map (with respect to the field of the vector
space) ϕ : g1 → g2, such that:

ϕ ([X, Y ]1) = [ϕ(X), ϕ(Y )]2 ∀ X, Y ∈ g1 .

Definition B.1.9.
Let G be a Lie group and g ∈ G, then the following diffeomorphisms

Lg : G→ G, x 7→ g ◦ x ≡ gx und Rg : G→ G, x 7→ x ◦ g ≡ xg

are called left translation and right translationright translation respec-
tively.

B.1.2. Lie algebra of a Lie group

Let X(G) denote the set of smooth vector fields on G. On smooth manifolds, tangent
vectors define derivations, such that the vector field commutator can be defined as
usual:

[v, w](f) = (vw)(f)− (wv)(f) := v(w(f))− w(v(f)) .
The following calculation shows, that the vector field commutator is the same as the
Lie derivative:

(Luv) (f) = lim
t→0

(Φ−t)∗v − (Φ0)∗v
t

(f) = lim
t→0

(Φ−t)∗v − v
t

(f)

= lim
t→0

1
t

((Φ−t)∗v(f)− v(f))

= lim
t→0

1
t
(v(ϕ−t ◦ f)− v(f))

= lim
t→0

1
t
(v(ϕ−t ◦ f)− v(f) + {Φ∗tv(ϕ−t ◦ f)} − {Φ∗tv(ϕ−t ◦ f)})

= lim
t→0

Φ∗t
{
v

(
Φ−t ◦ f − f

t

)}
+ lim

t→0

Φ∗−t{v(f)} − v(f)
t

= lim
t→0

v

(
Φ−t ◦ f − f

t

)
+ lim

t→0

Φ∗−t{v(f)} − v(f)
t

= v(L−uf) + Lu(v(f)) = u(v(f))− v(u(f)) = [u, v](f) .
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Lemma B.1.10.
Let φ : G1 → G2 be a differentiable map and let X, Y be smooth vector fields in
X(G1), then

φ∗([X, Y ]) = [φ∗X,φ∗Y ] .

Proof B.1.11.
By linearity it is enough to show φ∗(X ◦ Y ) = φ∗(X) ◦ φ∗(Y ):

φ∗(X ◦ Y )(f) = (X ◦ Y )(f ◦ φ) = X(Y (f ◦ φ)) = X(φ∗Y (f) ◦ φ)
= (φ∗X)((φ∗Y )(f)) = (φ∗X ◦ φ∗Y )(f) .

Remark B.1.12.
In the last proof we used the extension of push forwards for vector fields. In
general, the push forward (or differential) is a map

φ∗ : TpG1 −→ Tφ(p)G2, v 7−→ φ∗v .

In the case of vector fields, i.e. with variable base point, this means:

Xp 7−→ (φ∗X)φ(p) = (φ∗X ◦ φ)p .

A different notation for the push forward, we will also use, of a vector field in the
point p is Dpφ.

It has been shown so far, that (X(G), [•, •]) defines a Lie algebra. However this is not
what is meant by Lie algebra of a Lie group. Instead one uses a sub-algebra:

Definition B.1.13.
Let Lg be a left translation. A vector field X ∈ X(G) is called left invariant, if

(DpLg)Xp = XLg(p) ∀ p ∈ G .

The terminology has the following reason: Using the definition of the push forward,
understanding tangent vectors as derivations, one can write (only for left invariant
fields)

((Lg)∗X)(f) = X(f ◦ Lg) = X(f) ◦ Lg .
A left translation of a left invariant vector field results in the tangent vector of the
vector field at the image point of the left translation. Thus the vector field has not
changed.

Theorem and definition B.1.14.
The set of left invariant vector fields, together with the vector field commutator,
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is called the Lie algebra g of the Lie group G

Proof B.1.15.
It is enough to show, that if X and Y are left invariant, so is [X, Y ].

XY (f ◦ Lg) = X(Y (f ◦ Lg)) = X(Y (f) ◦ Lg) = X(Y (f)) ◦ Lg = XY (f) ◦ Lg ,

and similarly: Y X(f ◦ Lg) = Y X(f) ◦ Lg .
Subtraction shows:

(XY − Y X)(f ◦ Lg) = (XY − Y X)(f) ◦ Lg ⇒ [X, Y ] ∈ g .

Lemma B.1.16.
The Lie algebra g of a Lie group G is isomorphic to the tangent space in the
one-element:

g ∼= TeG .

Proof B.1.17.
Let X ∈ g be left invariant and g ∈ G arbitrary chosen, then:

Xg(f) = XLg(e)(f) = Xe(f ◦ Lg) = (DeLgXe)︸ ︷︷ ︸
∈TgG

(f) ⇒ Xe ∈ TeG .

The isomorphisms are:

g
∼=−→ TeG, X 7−→ Xe and TeG

∼=−→ g, Xe 7−→ DeLgXe .

The commutator is carried over by [X, Y ] = [Xe, Ye].

B.1.3. Exponential map

Definition B.1.18.
Let (G, ·) be a Lie group. A continuous one parameter group {Φt}t ⊂ G is
a group together with a continuous group homomorphism:

(R,+) Hom−→ (G, ·) .

Theorem B.1.19.
Let X ∈ g be a left invariant vector field and ΦX the associate integral curve
through e ∈ G, i.e. d

dt
ΦX(t) = XΦX(t) with ΦX(0) = e, then the following claims
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hold:

i) ΦX(t) is defined on R.

ii) ΦX(s+ t) = ΦX(s) · ΦX(t) ∀ s, t ∈ R.

iii) Φ(s·X)(t) = ΦX(s · t) ∀ s, t ∈ R.

Proof B.1.20 (from [Bau09, proof of theorem 1.2]).
ii) Let ΦX be defined on I = (tm, tM) ⊂ R. Choose a fixed s ∈ I and define the

curved

f : I 3 τ 7−→ ΦX(s) · ΦX(τ) ∈ G
h : (tm − s, tM − s) 3 τ 7−→ ΦX(τ + s) ∈ G .

Both of these maps define smooth curves, that are integral curves of X through
ΦX(s), i.e. f(0) = ΦX(s) = g(0) and

d

dτ
f(τ) = DΦX(τ)LΦX(s)

(
d

dτ
ΦX(τ)

)
= DΦX(τ)LΦX(s)(XΦX(τ))

= XΦX(τ)·ΦX(s) = Xf(τ)
d

dτ
h(τ) = XΦX(s+τ) = Xh(τ) .

Since integral curves are unique, f and h have to agree on their common
domain I ∩ (tm − s, tM − s), such that

ΦX(s) ∗ ΦX(t) = f(t) = h(t) = ΦX(s+ t)

for all t ∈ I ∩ (tm− s, tM − s). The extension to all of R follows from the next
property.

i) Assume (tm, tM ) to be the maximal interval, that Φx is defined on, with tM <∞
and let α = min(tM , |tm|). Define the map f by f(s) = ΦX(α2 ) · ΦX(s − α

2 ).
Then,

f(0) = ΦX(α2 ) · ΦX(−α
2 ) = ΦX(0) = e

and with g := ΦX(α2 ) also

d

ds
f(s) = DΦX(α2 )Lg

(
d

ds
ΦX(s− α

2 )
)

= XΦX(α2 )·ΦX(s−α2 ) = Xf(s) .

But this means, f(s) is an integral curve of X through e, that extends ΦX

beyond the assumed maximal interval I. Similarly it an extension beyond the
lower bond tm can be shown, such that I = R.

iii) Consider the map f(t) = ΦX(s · t). Then f(0) = e and d
dt
f(t) = sXf(s). Thus

f(t) is an integral curve of sX through e, which means ΦX(s · t) = ΦsX(t).

This theorem is the motivation to define the exponential map (of Lie group theory):
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Definition B.1.21.
The exponential map is defined by:

exp: g −→ G, X 7−→ exp(X) ≡ ΦX(1) .

Lemma B.1.22.
Let 0 be the zero vector field of g, then:

D0 exp = 1g .

Proof B.1.23.
First we will show, that D0 exp is a map in End(g):

D0 exp : T0g ∼= g −→ Texp(0)G = TeG ∼= g .

The second isomorphism has been shown in lemma B.1.16. The first isomorphism
is the general isomorphism between vector spaces, treated as manifolds, and their
tangent spaces. Since differential are linear by definition, the claim D0 exp ∈ End(g)
follows.

Let X ∈ g, then γ(t) = t ·X describes a curve in g with the properties γ(0) = 0
and γ′(0) = X. For the differential it follows, that:

(D0 exp)(X) = d

dt

∣∣∣∣∣
t=0

(exp(0 + t ·X)) = d

dt

∣∣∣∣∣
t=0

Φt·X(1)

= d

dt

∣∣∣∣∣
t=0

ΦX(t) = Xe ≡ X .

A direct consequence of the previous lemma is

d

dt

∣∣∣∣∣
t=0

exp(tX) = (D0 exp)X = X .

Corollary B.1.24 (Properties of the exponential map).
Let s, t ∈ R and X ∈ g, then:

i) exp(0) = e.
ii) exp(−X) = (exp(X))−1.
iii) exp((t+ s)X) = exp(tX) ◦ exp(sX).

Theorem and definition B.1.25.
Every one parameter sub group {gt}t∈R of G is generated by an element of g, i.e.
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there is an X ∈ g, such that

{gt}t∈R = {exp(tX)}t∈R .

Such an element is called generator.

Remark B.1.26.
If the Lie algebra is a matrix algebra, that is closed under multiplication, then
the exponential map is the well known e-function:

exp(A) = eA :=
∞∑
n=0

An

n! .

This can be seem as follows: If eA exists, so does f(t) = etA. With f(0) = 1 and

d

dt
f(t) = etAA ≡ etAAtA = (DtALetA)AtA = AetA = Af(t) ,

we see that f(t) is the integral curve of A through 1, i.e. ΦA(t) = f(t). Thus:

exp(A) = ΦA(1) = e1·A = eA .

B.2. Rotation group and vector operators

A part of physical quantities, known from classical physics, are vectors in R3. However,
the meaning of a vector in this context is not the mathematical one, i.e. being element
of a vector space, but the geometrical one. This discrepancy leads to the necessity to
define vector operators, to recover the geometrical properties of vector like quantities.
In this section we will briefly cover the concepts of rotation groups and vector operators,
as can be found in [Zir13] and [RW08].

B.2.1. Rotation group and its generators

A one parameter group of unitary operators {Ut}t∈R is called strongly continuous
group, if for all t0 ∈ R the following limit

lim
t→t0

Ut = Ut0

is valid, as well as the condition that Ut defines a local flow:

Us+t = Us ◦ Ut .

The concept of strongly continuous groups allows to formulate a very important theorem
for the connection between generators and symmetries:
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Theorem B.2.1 (Stone’s theorem).
Let {Ut}t∈R be a one parameter group of unitary operators that is strongly con-
tinuous, then the following is true:

i) For every Ut there exists a hermitian generator, i.e. a hermitian operator A
such that Ut = eitA.

ii) Let A be a hermitian operator. Then this operator generates a one parameter
group of unitary operators : {eitA}t∈R.

In consideration of the Schrödinger-equation i~∂t|ψ(t)〉 = H|ψ(t)〉, generators are
defined with an additional coefficient −i/~:

Ut = e−
i
~ tB .

For the rest of this subsection we will denote the standard scalar product of Rn with
〈·, ·〉.

Definition B.2.2.
The rotation group SO(n) is defined by

SO(n) := {R : Rn → Rn|〈Rx,Ry〉 = 〈x, y〉 ∀ x, y ∈ Rn, det(R) = 1} .

The maps R are called rotations. With R~α we denote a rotation around the
axis ~eα with rotation angle |~α|.

Definition B.2.3.
The space of skew-symmetric maps

so(V ) := {A : V → V |AT = −A} ,

together with the commutator is a Lie algebra. For the special case V = Rn it is
denoted by so(n).

It can be shown, that SO(n) is a Lie group of dimension n(n−1)
2 with Lie algebra so(n).

In the special case of n = 3, the dimensions of rotations and space agree, allowing
an Isomorphism between so(n) and (R3,×), often used in introductory books about
classical mechanics.

Lemma B.2.4.
A rotation Rϕ with angle ϕ around the xj-axis has the following generator in
so(3):

Ji = −
∑
j,k

εijk~ej ⊗ ~e ∗k .

Here {~ei} denotes the standard basis of R3 with dual basis {~e ∗i }.

Proof B.2.5.
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Œ for j = 3 we consider a rotation around the z-axis:

Rϕ =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


For Rϕ = eϕJ3 differentiation at ϕ = 0 yields:

J3 = d

dϕ

∣∣∣∣∣
ϕ=0

eϕJ3 = d

dϕ

∣∣∣∣∣
ϕ=0

Rϕ .

Hence:

J3 =

0 −1 0
1 0 0
0 0 0

 = ~e2 ⊗ ~e ∗1 − ~e1 ⊗ ~e ∗2 .

The remaining axes can be shown similarly.

The proof allows to read of the Lie algebra of SO(3) easily, by checking the dimensions:

Corollary B.2.6.
The Lie algebra of the Lie group SO(3) is so(3).

A straightforward calculation results in the following lemma:

Lemma B.2.7.
The generators of the so(3) satisfy the following commutator relation:

[Ji, Jj] = εijkJk
[ 3∑
j=1

J2
j , Ji

]
= 0 .

With the quantum mechanical convention for generators, we find

Lx = i~J1 =

0 0 0
0 0 −i~
0 i~ 0

 Ly = i~J2 =

 0 0 i~
0 0 0
−i~ 0 0



Lz = i~J3 =

 0 −i~ 0
i~ 0 0
0 0 0

 .

The commutator relations assume the following form:

[Lα, Lβ] = (i~)2εαβγLγ

[ 3∑
α=1

L2
α, Lβ

]
= 0 .

Theorem B.2.8.
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A rotation around ~α with rotation angle |~α| has the following generator

J = 1
|~α|

3∑
i=1

αi · Ji ∈ so(3) .

Thus the rotation map has the following form: R|~α| = e|~α|J := eJ|~α|.

Proof B.2.9.
Theorem B.1.25 allows us to deduce, that R|~α| is an element of SO(3). It remains
to show that is has the eigen vector ~α to the eigen value 1, and that the rotation
angle is |~α|.
A calculation shows

J2
|~α| = −|~α|2J|~α| .

This equation can be extended to

J2n+1
|~α| = (−1)n|~α|2nJ|~α| and J2n+2

|~α| = (−1)n|~α|2nJ2
|~α| .

Separating the exponential series in sine and cosine yields

R|~α| = eJ|~α| =
∑
n∈N0

1
n!J

n
|~α| = J0

|~α| +
∑

n∈2N0+1

1
n!J

n
|~α| +

∑
n∈2N

1
n!J

n
|~α|

= 1 +
∑
n∈N0

1
(2n+ 1)!J

2n+1
|~α| +

∑
n∈N0

1
(2n+ 2)!J

2n+2
|~α|

= 1 +
∑
n∈N0

(−1)n‖~α‖2n

(2n+ 1)! J|~α| +
∑
n∈N0

(−1)n‖~α‖2n

(2n+ 2)! J2
|~α|

= 1 + sin(|~α|)
|~α|

J|~α| +
1− cos(|~α|)
|~α|2

J2
|~α|

= 1 + sin(|~α|)J + (1− cos(|~α|))J2 .

One can calculate that J~α = 0. Hence R|~α|~α = ~α. The third property of corollary
B.1.24 assures that the rotation angle scales linearly with |~α|. So it is enough to
check the rotation angle for only one value. A short calculation shows that R|~α| for
|~α| = π/2 is indeed the rotation with rotation angle π/2.

B.2.2. Vector operators

As announced in the beginning of this section, we will use the rotation group SO(3) to
define vector operators here.

Definition B.2.10.
Let A = (A1, A2, A3) be a set of operators A1 : H → H. Then A is called vector
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operator, if the operators transform like a vector in R3 for rotations. That is:

R

A1
A2
A3

 =

A
′
1

A′2
A′3

 and A′i = R̂†AR̂ .

Here R is a rotation and R̂ its representation on the Hilbert space.

This definition uses the geometrical definition of vectors in R3. However the condition
to be a vector operator can be bothersome to check like this. The next lemma gives an
alternative definition:

Lemma B.2.11.
A is a vector operator, if and only if the commutator relations [Lα, Aβ] = i~εαβγAγ
are satisfied.1

Proof B.2.12 (Œ for rotations around the z-axis and A1).
The first thing to notice, is the equality of d

dϕ

∣∣∣
ϕ=0

A′1(ϕ) and i
~ [L3, A1]:

i
~ [L3, A1] = i

~
(L3A1 − A1L3)

=
(
d

dϕ
e
i
~ϕL3A1

)
e−

i
~ϕL3

∣∣∣∣∣
ϕ=0

+ e
i
~ϕL3

(
d

dϕ
A1e

− i
~ϕL3

)∣∣∣∣∣
ϕ=0

= d

dϕ

∣∣∣∣∣
ϕ=0

e
i
~ϕL3A1e

− i
~ϕL3 = d

dϕ

∣∣∣∣∣
ϕ=0

A′1(ϕ) .

Using the rotation matrix we find:

(RϕA)1 = cos(ϕ)A1 − sin(ϕ)A2 (RϕA)2 = sin(ϕ)A1 + cos(ϕ)A2

(RϕA)3 = A3 .

Vector operator ⇒ commutator relation:
If A is a vector operator, then (RϕA)1 = A′1(ϕ). Differentiation at ϕ = 0
shows:

−A2 = d

dϕ

∣∣∣∣∣
ϕ=0

(RϕA)1 = d

dϕ

∣∣∣∣∣
ϕ=0

A′1(ϕ) = i
~ [L3, A1]

⇔ [L3, A1] = i~A2 .

Commutator relation ⇒ vector operator:
We have to show, that (RϕA)1 = A′1(ϕ) holds. From the commutator
relations it follows that

d

dϕ

∣∣∣∣∣
ϕ=0

A′1(ϕ) = i
~ [L3, A1] = −A2 = d

dϕ

∣∣∣∣∣
ϕ=0

(RϕA)1 .

1The reason we use the quantum mechanical definition of generators here is, that the angular momen-
tum operators L̂α will be the representations of these generators in properly chosen coordinates.
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The last equality can be calculated directly. Hence we find equality up to a
constant (with respect to ϕ):

(RϕA)1 = A′1(ϕ) +B .

Chsooing ϕ = 0, we find B ≡ 0, which proves the claim.

Corollary B.2.13.
The generators L = (L1, L2, L3) define a vector operator.

B.2.3. Pauli-matrices

At this point a short digression on SU(2) and the Pauli matrices seems appropriate.

Definition B.2.14.
The Lie group SU(2) is defined by

SU(2) := {R : C2 → C2|〈Rx,Ry〉 = 〈x, y〉 ∀ x, y ∈ C2, det(R) = 1} .

The Lie algebra of SU(2) is su(2) defined by

su(2) := {A : C2 → C2|AT = −A} .

Inspecting these matrices reveals that su(2) is a 3-dim vector space with the following
special basis:

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

These matrices are called Pauli matrices. The choice of indices and especially of this
basis is absolutely arbitrary. However it is the predominant convention in the physical
literature. These matrices have the following commutator relations:

[σj, σk] = 2iεjklσl .

B.3. Eigen states of angular momentum operators

A vector operator of particular interest is the angular momentum operator. For that
reason, the eigen states of angular momentum operators (or in general the representations
of generators of rotations) will be inquired.

B.3.1. Eigen states of generators of rotations

We consider hermitian operators Ji, that satisfy the following commutation relations:2

[Jα, Jβ] = −εαβγJγ [J2, Jα] = 0 .
2Take the representations (with different coefficients) from corollary D.1.18 for example.
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Furthermore, we define the following operators

J2 :=
3∑
i=1

J2
i J± := J1 ± iJ2 ⇒ (J+)† = J−

From the commutator relations for the Ji, the following equations can be shown:

[J3, J
±] = ±J± , [J+, J−] = 2J3 ,

J2 = J+J− + J2
3 − J3 = J−J+ + J2

3 + J3 .

Theorem B.1.6 states, that J2 and J3 have a joint eigen basis {|jm〉}.

Remark B.3.1.
One could also choose the pairs J2, J1 or J2, J2. The choice of J2, J3 is only a
convention.

In regard of the result, the notation {|jm〉} was chosen, as is the notation for the eigen
values:

J2|jm〉 = j(j + 1)|jm〉 J3|jm〉 = m|jm〉 .

Theorem B.3.2.
For the eigen value numbers j and m of J2 and J3, the following restrictions
apply:

j ∈ N0 ∪ 1
2N ,

m ∈ {−j,−j + 1, ..., j − 1, j} .

Proof B.3.3.
The reason for the notation of J± as well as their meaning can be found from the
commutator relations [J3, J

±] = ±J±:

J3J
±|jm〉 = (J±J3 ± J±)|jm〉 = (m± 1)J±|jm〉 .

Put differently, the operators J+ and J− map an eigenstate of J3 to an eigen state
of the eigen value increased and decreased by 1. Thus we may write

J±|jm〉 =
√
j(j + 1)−m(m± 1) |j(m± 1)〉 .

To see, that the coefficient c± =
√
j(j + 1)−m(m± 1) is the right one, up to a

phase eiϕ, we calculate

|c+|2 = 〈J+ jm|J+ jm〉 = 〈jm|J−J+|jm〉 = 〈jm|J2 − J2
3 − J3|jm〉

= j(j + 1)−m2 −m = j(j + 1)−m(m+ 1) ,

and similarly for |c−|2. The restriction for the eigen value numbers j and m is a
consequence of the positive definiteness of the hermitian scalar product:

0 ≤〈J1 jm|J1 jm〉+ 〈J2 jm|J2 jm〉 = 〈jm|J2
1 |jm〉+ 〈jm|J2

2 |jm〉
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= 〈jm|J2
1 + J2

2 |jm〉 = 〈jm|J2 − J2
3 |jm〉 = j(j + 1)−m2

⇔ |m| ≤
√
j(j + 1)

Hence there is a minimal m = m and a maximal m = m̃. Taking into account, the
action of J± on |jm〉, and that J±|jm〉 has to be an eigen state of J3 to the eigen
value m± 1, we need to demand:

J+|jm̃〉 = 0 ⇒ j(j + 1) = m̃(m̃+ 1)
J−|jm〉 = 0 ⇒ j(j + 1) = m(m− 1) .

Rewriting the system of equations yields:

m̃ ≥ m

m̃(m̃+ 1) = m(m− 1) .

It follows, that m̃ = −m and j = m̃ = −m. Since J± increases/decreases in unit
steps, j as to be in N0 ∪ 1

2N.

Remark B.3.4.
For the physical angular momentum, additional coefficients ~ are needed. However,
the statement of the last theorem remains unchanged.

B.3.2. Addition of angular momentum and Clebsch-Gordon
coefficients

We consider a system that allows for two angular momenta/spins. Again, ignoring the
proper units, the total angular momentum operators are

J = ~J1 + ~J2 Jz = J1z + J2z ... J± = Jx ± iJy ,

where Ji denotes the i-th particle: Jiz|ji,mi〉 = mi|ji,mi〉. As explained in subsection
2.1.1, the system is described by the tensor space of both Hilbert spaces. Thus, a tensor
basis is:

|j1,m1 ; j2,m2〉 = |j1,m1〉 ⊗ |j2,m2〉 .
We are now looking for a joint eigen basis of J2, Jz, J

2
i :

|j,m〉 := |j, j1, j2,m〉 .

The completeness relation 1 = ∑
ji,mi |j1,m1; j2,m2〉〈j1,m1; j2,m2| allows to write

|j,m〉 =
∑
j̃1,j̃2
m1,m2

|j̃1,m1; j̃2,m2〉〈j̃1,m1; j̃2,m2|j,m〉 .

Not all coefficients 〈j̃1,m1; j̃2,m2|j,m〉 are non-zero. By definition, |j,m〉 as well as
|j̃1,m1; j̃2,m2〉 are eigen states of J2

i :

j̃i(j̃i + 1)〈j̃1,m1; j̃2,m2|j,m〉 = 〈j̃1,m1; j̃2,m2|J2
i |j,m〉
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= ji(ji + 1)〈j̃1,m1; j̃2,m2|j,m〉 .

Hence, if ji 6= j̃i, it must hold that 〈j̃1,m1; j̃2,m2|j,m〉 = 0.
Furthermore, Jz = J1z + J2z causes the addition of eigen values m = m1 +m2, such

that:

m〈j̃1,m1; j̃2,m2|j,m〉 = 〈j̃1,m1; j̃2,m2|Jz|j,m〉
= 〈j̃1,m1; j̃2,m2|J1z + J2z|j,m〉
= (m1 +m2)〈j̃1,m1; j̃2,m2|j,m〉 .

If m1 +m2 6= m, then it must hold that 〈j̃1,m1; j̃2,m2|j,m〉 = 0 . Finally, taking only
the non-zero coefficients into account, we can write:

|j,m〉 =
∑

m1,m2
m1+m2=m

|j1,m1; j2,m2〉〈j1,m1; j2,m2|j,m〉 .

Definition B.3.5.
The coefficients 〈j1,m1; j2,m2|j,m〉 are called Clebsch-Gordon coefficients.

So far, the Clebsch-Gordon coefficients are characterized by the condition, that {|j,m〉}
has to be a joint eigen basis of the operators J2, Jz, J

2
i . It remains to find coefficients,

such that the condition is met. In fact, there do exist algorithms to find such coefficients.



C
Tensors and Index-Notation
Tensors are a vital concept in physics. This chapter tries to introduce the underlying algebraic
concept of tensor products following [RW05] and [HO07]. As result, the universal property is the
starting point, allowing to prove existence and the well known properties for calculations. We
conclude this chapter with an introduction to Ricci-calculus, as given in [Jän05], observing the
invariant isomorphisms behind index manipulations.

C.1. Tensor product

Usually (at least in the physical literature) tensors are defined by transformation behavior
or calculational properties. Though this approach delivers a ready introduction for
calculations, the concepts remain non-transparent. The most transparent way, yet
sadly also the most abstract way, is the definition by universal properties commonly
used in abstract algebra. However, the fundamental behavior, the transformation
behavior, follows as direct corollary. An important structure left behind in the approach
of transformation behavior, is the tensor product, that will be the first object to
investigate here.

C.1.1. Existence and uniqueness

The following section is rather technical and can be skipped, if one is only interested in
the behavior of tensors.

Definition C.1.1 (Universal property).
Let V and W be K-vector spaces. Also let (T, t) be a tupel, consisting of a vector
space T and a bilinear map t : V ×W → T . The tuple is called tensor product
if the following universal property is fulfilled:
Let U be another vector space and f : V ×W → U be a linear map. Then there
exists a linear map ϕf : T → U , such that the following diagram commutes:

V ×W U

T

f

t ϕ

Theorem C.1.2 (Existence and uniqueness).
For any two K- vector spaces V and W , there exists always a tensor product
(T, t). This tensor product is unique up to isomorphy. That is, if (T ′, t′) is a
second tensor product, then there exists a defined isomorphism Ψ: T → T ′ such
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that the following diagram commutes:

V ×W T ′

T

t′

t ψ

Proof C.1.3.
Preparations: Let KM denote the set of maps from M in the field K. The set
KM is a vector space with point wise addition. A special class of maps in this
vector space are Kronecker-deltas

δm : M −→ K , x 7−→ δm(x) :=
{

1 , x = m
0 , sonst .

This gives rise to an embedding Φ of M in KM :

Φ: M ↪→ KM , m 7→ δm .

An important subspace of KM for this proof is the space of maps with f(x) = 0
for all but finitely many x ∈ M . This subspace will be denoted by K(M). Every
element of this space can be written as linear combination of finitely many deltas
δm. By definition the deltas are linear independent and thus forming a basis of
K(M):

K(M) = spanK(im(Φ)) .
Existence:
The existence follows from inspecting a commutative diagram:

K(V×W )

V ×W

Φ

(a)

K(V×W )

T

V ×W

π

Φ

(b)

K(V×W )

T

V ×W

π

Φ
t

(c)

K(V×W ) U

T

V ×W

π

σ

Φ
t

f

(d)

K(V×W ) U

T

V ×W

π

σ

ϕ

Φ
t

f

(e)



138 Appendix C. Tensors and Index-Notation

(a) As we have seen, there is an embedding, that is, an injective map Φ: V ×W →
K(V×W ).

(b) We define the subspace X ⊂ K(V×W ). Let v, v′ ∈ V , w,w′ ∈ W and a ∈ K,
then X shall be defined as linear span of the following elements

δ(v+v′,w) − δ(v,w) − δ(v′,w) , δ(v,w+w′) − δ(v,w) − δ(v,w′) ,

δ(av,w) − δa(v,w) and δ(v,aw) − δa(v,w) .

The space T can now be defined as quotient T := K(V×W )/X. Hence T is a
space of equivalence classes with the following equivalence relation:

h ∼ h′ ⇔ ∃ x ∈ X : x′ = h+ x .

Let π : K(V×W ) → T be the canonical projection, i.e. the surjective map
assigning every h ∈ K(V×W ) its equivalence class π(h) = [h] ∈ K(V×W )/X.

(c) The map t : V ×W → T will be defined by t = π ◦ Φ. Due to the choice of X
the map is bilinear:

t((v + v′, w)− (v, w)− (v′, w)) = π(δ(v+v′,w) − δ(v,w) − δ(v′,w)) = [0]

⇒ [δ(v+v′,w)] = [δ(v,w)]+ [δ(v′,w)] ⇔ t((v+v′, w)) = t((v, w))+ t((v′, w)) .
The remaining properties can be shown similarly.

(d) It remains to show, that (T, t) satisfies the universal property. So let U be a
K-vector space and f : V ×W → U a bilinear map. The image of Φ defines a
basis of K(V×W ). Define the map σ by

σ(Φ(v, w)) = f(v, w) .

By linear completion σ is a linear map K(V×W ) → U . From the bilinearity of
f follows the bilinearity of σ:

σ(Φ(v + v′, w)) = f((v + v′, w)) = f(v, w) + f(v′, w) = σ(Φ(v, w)) + σ(Φ(v′, w)) .

Hence U ⊆ ker(σ).

(e) The fundamental theorem on homomorphisms states, that there exists a unique
linear map ϕ, completely defined by σ, such that the upper triangle of the
diagram commutes. Since σ is uniquely defined by f , so is ϕ, proving the
universal property.

Uniqueness:
To prove uniqueness we use a second tensor space T ′ for U :

(a) Since we have already proven the universal property, we know that there is a
unique map Ψ′ : T → T ′, defined by t′.

(b) Similarly there is a unique map Ψ: T ′ → T defined by t.
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T ′

T

V ×W

Ψ′

t

t′

(a)

T ′

T

V ×W

Ψ

t

t′

(b)

T T

V ×W

ξ

tt

(c)

T ′

T T

V ×W

Ψ

ξ

Ψ′

tt
t′

(d)

T

T ′ T ′

V ×W

Ψ′

ξ

Ψ

t′t′
t

(e)

(c) Also there is a unique linear map ξ ∈ End(T ), such that

ξ ◦ t = t

holds. Furthermore, IdT ◦ t = t holds. Since ξ was unique, ξ = IdT .

(d) Combining the diagrams, which commute by definition, shows that the whole
diagram does, too. Hence:

IdT = ξ = Ψ′ ◦Ψ .

(e) Similarly it follows that IdT ′ = Ψ ◦ Ψ′. Due to the uniqueness of Ψ, being
determined by t and the uniqueness of Ψ′, being determined by t′, theses maps
coincide in both diagrams. Thus finally Ψ′ = Ψ−1, i.e. it is an isomorphism.

C.1.2. Tensors

The tensor product is unique up to isomorphy, so it is common to speak about the
tensor product. The usual notation for (T, t) is (V ⊗W,⊗). As long as the field K is
understood, one can write ⊗, otherwise one needs to specify the field, e.g. ⊗K. This is
important, since ⊗ is bilinear only with respect to K:

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w ,

v ⊗ (w + w′) = v ⊗ w + v ⊗ v′ ,

(αv)⊗ w = α(v ⊗ w) = v ⊗ (αw) .
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Definition C.1.4.
Tensors of the form v ⊗ w ∈ V ⊗W with v ∈ V and w ∈ W are called pure
tensors

By the construction of V ⊗W it follows that every tensor can be written as sum of
pure tensors.

Theorem C.1.5.
Let {vi}i∈I be a basis of V and {wj}j∈J a basis of W for finite dimensional vector
spaces. Then {vi ⊗ vj}i∈I,j∈J is a basis of V ⊗W and it follows that:

dim(V ⊗W ) = dim(V ) · dim(W ) .

Proof C.1.6.
We consider the following map:

t′ : V ×W −→ K(I,J) ,

∑
i∈I

xivi,
∑
j∈J

yjwj

 7−→ xiyj · δ(i,j) .

Here I and J are the index sets of the bases of V andW . The map t′ is bilinear and
maps elements (vi, wj) to the basis elements δ(i,j) of K(I,J). By linear completion
there is a unique linear map ϕ : K(I,J) → U for every bilinear map f : V ×W → U ,
defined by

f(v, w) = ϕ(t′(v, w)) ∀ v ∈ V, w ∈ W .

Thus the following diagram commutes:

V ×W U

K(I,J)

f

t ϕ

Hence the tuple (K(I,J), t′) satisfies the universal property. With theorem C.1.2 we
find K(I,J) ∼= V ⊗W . The isomorphism Ψ between those vector spaces has the
property Ψ ◦ t′ = ⊗, mapping t′(vi, wj) = δ(i,j) to vi ⊗ wj. Since {δ(i,j)} is a basis
of K(I,J), so is {vi ⊗ wj} a basis of V ⊗W .

With the universal property we can prove the following isomorphies:

Lemma C.1.7 (Ismorphisms of tensor spaces).
Let V,W and U be K-vector spaces, then the following isomorphies are unique
for the stated conditions:

(i) V ⊗W ∼= W ⊗ V, v ⊗ w 7→ w ⊗ v.

(ii) (U ⊗ V )⊗W ' U ⊗ (V ⊗W ), (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w).
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(iii) (U
⊕

V )⊗W ' (U ⊗W )
⊕

(V ⊗W ) (u, v)⊗ w 7→ (u⊗ w, v ⊗ w).

(iv) K⊗K V ∼= V, a⊗ v 7→ a · v.

Proof C.1.8 (Œ for (i)).
Let t : V × W → W ⊗ V be defined by t(v, w) = w ⊗ v. Every bilinear map
f : V ×W → U determines ϕ : W × V → U uniquely by

ϕ(w ⊗ v) = f(v, w) ,

such that the following diagram commutes:

V ×W U

W ⊗ V

f

t ϕ

Thus (W ⊗ V, t) satisfies the universal property and is isomorphic to V ⊗W due
to theorem C.1.2. The remaining isomorphisms can be proven similarly.1

The last isomorphism (iv) is only valid, if the field used as vector space is the same
as the field used to define the tensor product. If K′ ⊃ K is a field containing K as
subfield (e.g. C and R), then statement (iv) fails: K′ ⊗K V 6∼= V . Yet K′ ⊗K V becomes
a K′-vector space. That is, the scalar range of V is extended to K′, by

a′ · (b′ ⊗ v) = (a′ · b′)⊗ v .

Definition C.1.9.
Let K be a subfield of C, i.e. K = Q or R, and let V be a K-vector space. The
tensor product V C := C⊗K V is called complexification of V .

It can be shown, that if {vj}j∈J is a basis of V , so is {1⊕K vj}j∈J of V K′ .

Lemma C.1.10.
Let V1, V2,W1,W2 be vector spaces, and ϕ1 : V1 → W1 as well as ϕ2 : V2 → W2 be
linear maps. Then there is a unique linear map

ϕ1 ⊗ ϕ2 : V1 ⊗ V2 −→ W1 ⊗W2 , (ϕ1 ⊗ ϕ2)(v1 ⊗ v2) = ϕ1(v1)⊗ ϕ2(v)2 .

This tensor product of linear maps has the following properties:

1. IdV1 ⊗ IdV2 = IdV⊗V2.

2. For two additional linear maps ϕ′1 : V1 → W1 and ϕ′2 : V2 → W2, it holds
that:

(ϕ1 ⊗ ϕ2) ◦ (ϕ′1 ⊗ ϕ′2) = (ϕ1 ◦ ϕ′1)⊗ (ϕ2 ◦ ϕ′2) .

1For example see [RW05, p. 4-5] for (iv).
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3. The map

Hom(V1,W1)× Hom(V2,W2) ↪→ Hom(V1 ⊗ V2,W1 ⊗W2)
(ϕ1, ϕ2) 7→ ϕ1 ⊗ ϕ2

is bilinear and injective. For finite-dimensional vector spaces it is an iso-
morphism.

From the definition of the algebraic dual space V ∗ = Hom(V,K) and the isomorphy
K⊗K V ∼= V the injection

V ∗1 ⊗ V ∗2 ↪→ (V1 ⊗ V2)∗ ,

follows as direct result from the previous lemma. Accordingly it is an isomorphism for
finite-dimensional vector spaces.

Lemma C.1.11.
There is an embedding V2⊗V ∗1 into Hom(V1, V2), defined by the following injective
linear map

V2 ⊗ V ∗1 ↪→ Hom(V1, V2) , v2 ⊗ ϑ1 7→ `v2,ϑ1 ,

where `v2,ϑ1(v) = ϑ1(v) · v2. This map can be extended linearly for V2 ⊗ V ∗1 .

As before, the embedding becomes an isomorphy in the finite-dimensional case.

Corollary C.1.12.
Let {ei}i be a basis of a finite-dimensional vector space V and {ϑj}j the dual
basis. Then, every linear operator L ∈ Hom(V,W ) can be written as tensor from
W ⊗ V ∗:

L =
∑
i

(Lei)⊗ ϑi .

Although the tensor product is defined for infinite-dimensional vector spaces, too, the
tensor product of two Hilbert spaces does not need to be one as well. The missing
property is completeness here.
Let H1 and H2 be two Hilbert spaces. One can define a scalar product on H1 ⊗H2

by

〈v1 ⊗ v2|w1 ⊗ v2〉 = 〈v1|w1〉 · 〈v2|w2〉 .

To obtain a Hilbert space, one can take the metric completion with respect to that
scalar product.
We have spoken about bases so far, even in the infinite-demensional case. A basis

allows to linear combine every element of the space with finitely many basis elements.2
Theorem C.1.5 can be extended to Hilbert-bases.

2Contrasting Hilbert-bases, where the sum is infinite. In infinite spaces, a true basis may even become
uncountable.
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C.2. Ricci calculus

In Ricci calculus, tensors are characterized by their coefficients (becoming a list of
numbers). There are three important principles we need to understand:

1) Components define objects
2) Position of indices determines transformation behavior.
3) Summation convention.

C.2.1. Co-and contravarianz

Let V be a vector space, {ei}i=1,...,n a basis and V ∗ be the dual space with dual basis
{ϑi}i=1,...,n. A vector v ∈ V is called contravariant and is described by coefficients
with upper indices:

v =
n∑
i=1

viei ≡ viei .

A dual vector ϕ ∈ V ∗ is called covariant and is described by coefficients with lower
indices

ϕ = ϕiϑ
i .

In the last equation we have already used the summation convention. Over same
indices, one upper and one lower, will always be summed (without having to write the
summation symbol).
Changing the basis ei → ẽi does not change the element v, but its components:

v = viei = ṽkẽk .

By definition there are coefficients, such that ei = Ajiẽj can be written. Plugging in
yields the connection between vi and ṽk:

v = ṽkẽk = viei = viAjiẽj ⇒ ṽk = Akiv
i .

For the coefficients of the matrix A, we have already used the Ricci convention. Still,
the first index describes the row and the second index the columns, independent if it is
an upper or lower index.

Remark C.2.1 (Composition of linear maps).
Let A,B ∈ End(V ) for a finite dimensional vector space V . Due to the isomorphy
End(V ) ' V ⊗ V ∗, these maps can be written as tensors:

A = Aei ⊗ ϑi = Ajiej ⊗ ϑi and B = Bk
`ek ⊗ ϑ` .

Evaluating (A ◦B)(v) for an arbitrary vector v ∈ V yields

(A ◦B)(v) = Ajiej · ϑi
(
Bk

`ek · ϑ`(v)
)

= AjiB
k
`ϑ

`(v)ϑi(ek) · ej
= AjiB

k
`ϑ

`(v)δik · ej = AjiB
i
`ϑ

`(v) · ej
=
((
AjiB

i
`

)
ej ⊗ ϑ`

)
(v) .
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From the last equality we can read off the coefficient behavior under composition:

(A ◦B)j` = AjiB
i
`

If A is a basis change matrix, there is an inverse A−1. From the above remark we know,
that this can be expressed by Aij(A−1)jk = δik. Dual vectors are linear and defined by
ϑi(ej) = δij and respectively ϑ̃i(ẽj) = δij, thus we find:

δij = ϑi(ej) = ϑi(Akj ẽk) = Akjϑi(ẽk) .

Since the dual vector space is also a vector space, there are coefficients such that
ϑi = M i

` ϑ̃
`. Plugging in results in the transformation behavior of covectors:

δij = Akjϑ
i(ẽk) = AkjM

i
` ϑ̃

`(ẽk) = AkjM
i
` δ
k
` = AkjM

i
k = M i

kA
k
j ⇒ M = A−1 .

⇒ ϕ = ϕ̃jϑ̃
j = ϕiϑ

i = ϕi(A−1)ikϑ̃k ⇒ ϕ̃j = (A−1)ijϕi .
By definition, basis change matrices are orthogonal/unitary. That is A−1 = A† /
A−1 = AT . Summing up our findings:

coefficients transformation basis vectors

contravariant ṽk = Akiv
i ẽk = (AT )ikei

covariant ϕ̃k = (AT )ikϕi ϑ̃k = Akiϑ
i

C.2.2. Tensors in Ricci calculus

After we have seen the foundations of Ricci calculus we can use this formulation on
tensors:

Definition C.2.2.
A tensor, consisting of r vectors and s covectors

T ∈ V ⊗ ...⊗ V︸ ︷︷ ︸
r times

⊗ V ∗ ⊗ ...⊗ V ∗
s times

is called tensor of type (r, s). The number r + s is called the rank, also for
a general order of vectors and covectors.

A tensor of type (r, s) can be expanded as follows:

T = T i1...irj1...js ei1 ⊗ ...⊗ eir ⊗ ϑ
j1 ⊗ ...⊗ ϑjs .

In Ricci calculus one agrees upon the following identification:

T = T i1...irj1...js .

A change of basis results in the following transformation behavior:

T̃ n1...nr
m1...ms = An1

i1 ...A
nr
ir(A

−1)m1
j1 ...(A

−1)msjs T
i1...ir

j1...js

This behavior is used to define tensors in the physical literature.
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C.2.3. Raising and lowering indices

In case of a Riemannian manifold there is a fourth principle, induced by the Riemannian
metric:

4) Raising and lowering indices

To understand the invariant meaning behind these manipulations, instead of just defining
them, it is best to use the coordinate free formulation first.
Let g be a scalar product (or Riemannian metric). Then there is an isomorphism

I1 : vector −→ covector v 7−→ I1(v) = g(v, ·) .

Remark C.2.3.
In the literature, the isomorphism I1 and its inverse I−1

1 are called flat- and sharp
isomorphism respectively. The usual notation is

I1(v) = v[ and I−1
1 (ω) = ω# .

These isomorphisms can be applied to individual parts of the tensor, still defining an
isomorphism between tensor spaces. For example, a (1, 1)-tensor becomes a (0, 2)-tensor
if I1 ⊗ 1 is applied, and a (2, 0)-tensor, if 1⊗ I−1

1 is applied.
Let ∂µ be a tangent basis and dxν be the dual basis of the cotangent space. Defining

the coefficients of the Riemannian metric by gµν = g(∂µ, ∂ν), there is an inverse matrix
(list of numbers) gµν . By definition of scalar products the matrices are symmetric:
gµν = gνµ and hence gµν = gνµ. For the isomorphisms I1 and I−1

1 it follows that:

I1(∂µ) = g(∂µ, ·) = gµνdx
ν and thus3 I−1

1 (dxµ) = gµν∂ν .

The coefficients transform as follows:

I1(vµ∂µ) = gµνv
µdxν =: vνdxν and I−1

1 (uµdxµ) = gµνuµ∂ν =: uν∂ν .

Remark C.2.4.
A contravariant vector vµ becomes a covariant vector vν by lowering the index:

vν = gµνv
µ .

Raising an index on the other hand, transforms a covector into a vector:

uν = gµνuµ .

The raising and lowering can be applied for indices of tensors separately:

gµνA
...µ...

... = A... ...µ ... .

3∂µ = I−1
1 (gµνdxµ) = gµν I

−1
1 (dxµ) ⇒ gµνgµν I

−1
1 (dxµ) = I−1

1 (dxµ) = gµν∂µ.
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Remark C.2.5.
The scalar product of two vectors uµ∂µ and vν∂ν can be written as composition:

g(uµ∂µ, vν∂ν) = uµvνgµν = uνv
ν = vµu

µ .



D
Representation theory

In this chapter, the basics of representation theory, that can be found throughout [Zir13] and
[Zir10], are summarized. The definitions and concepts of representations of groups and algebras
as well as important algebras for quantum mechanics and their representations are introduced.

D.1. Overview of representation theory

Representations allow to map structures onto vector spaces to investigate properties in
the well understood context of linear maps. In the following we will consider groups
and algebras.

D.1.1. Representations of groups

Definition D.1.1.
Let G be a group and V be a K vector space. A group homomorphism D : G→
GL(V ) is called representation of G on V .

A group homomorphism is a map H : G1 → G2 between two groups, that satisfies
H(g ◦ k) = H(g) ◦H(k) ∀ g, k ∈ G1 .

A representation is the special case of G2 being the general linear group of a vector
space.

Definition D.1.2.
If V is a complex vector space with hermitian scalar product 〈·, ·〉 : V × V → C
and the representation satisfies

〈D(g)v,D(g)w〉 = 〈v, w〉 ∀ v, w ∈ V ∀g ∈ G ,

the representation si called unitary.

Instead of using group homomorphisms, a group representation can be constructed
using group actions on a vector space:

Definition D.1.3.
Let (G, ◦) be a group and M a set. A group action of the group G on the
set M is a binary operator � : G×M →M wit the following properties for all
g1, g2 ∈ G and x ∈M :

(g1 ◦ g2) � x = g1 � (g2 � x)
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e � x = x ,

where e is the neutral element of the group.

Theorem D.1.4.
Let G be a group and V be a K vector space. A linear group action of G on V
defines a group representation of G on V .

Proof D.1.5.
To be linear means, that the group action has the following property:

g � (αv + βw) = α · g � v + β · g � w ∀v, w ∈ V α, β ∈ K .

Because of the linear group action, a map Φ: G→ End(V ) can be defined by:

g 7→ Φg mit Φg(v) = g � v ∀g ∈ G ∀v ∈ V .

The linearity of Φg is a direct consequence of the linearity of the group action.
Using the properties of group actions show that Φg is a group homomorphism:

Φg1◦g2v = (g1 ◦ g2) � v = g1 � (g2 � v) = (Φg1 ◦ Φg2)v .

Let g−1 be the inverse element of g ∈ G, then:

Φg−1 ◦ Φg = Φg−1◦g = Φe = IdV = . . . = Φg ◦ Φg−1 ⇒ Φg−1 = Φ−1
g .

Hence every Φg is invertible and thus Φ: G→ GL(V ).

To close this subsection we will prove Schur’s lemma (as can be found in [Zir10,
section 4.2]). To do so we need further definitions:

Definition D.1.6.
A representation D of G on V is called irreducible, if the only G-invariant
subspaces if V are {0} and V itself. A subspace U ⊂ V is called G-invariant , if

D(g)U = U ∀ g ∈ G .

Definition D.1.7.
Two representations (G, V1,D1) and (G, V2,D2) are called equivalent, if there
exists an isomorphism Φ: V1 → V2 such that Φ ◦ D1 = D2 ◦ Φ for all g ∈ G.

Theorem D.1.8 (Schur’s lemma).
Let (G, V1,D1) and (G, V2,D2) be two irreducible maps of G on a finite-
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dimensional vector space. If there is a linear map Φ: V1 → V2 that satisfies

Φ ◦ D1(g) = D2(g) ◦ Φ ∀ g ∈ G ,

then either Φ ≡ 0 or Φ is invertible, i.e. an isomorphism.

Proof D.1.9.
Let v ∈ ker(Φ) ⊂ V1, then for all g ∈ G it holds that:

0 = Φ(v) ⇒ 0 = D2(g)Φ(v) = Φ(D1(g)v) ⇒ D1(g)v ∈ ker(Φ) .

Thus ker(Φ) is a G-invariant subspace of V1. By assumption it holds that ker(Φ) =
V1, which would lead to Φ ≡ 0, or ker(Φ) = {0}.
Assuming ker(Φ) = {0}, then Φ is injective and thus also bijective by the

rank-nullity theorem.

Corollary D.1.10.
Let (G, V,D) be an irreducible representation on a finite-dimensional C vector
space. Then, every endomorphism Φ ∈ End(V ) that satisfies

Φ ◦ D(g) = D(g) ◦ Φ ∀ g ∈ G

is proportional to the identity map, i.e. Φ ∼ IdV .

Proof D.1.11.
In the complex number field the characteristic polynomial det(Φ− x · Idv) has at
least one zero (exactly dim(V ) to be precise). Let λ be the zero, i.e. as eigen value
of Φ.
The map Φ− λIdV satisfies

(Φ− λIdV ) ◦ D(g) = D(g) ◦ (Φ− λIdV ) ,

since IdV commutes with every D(g). By definition (Φ− λIdV ) is not invertible
since the kernel is not zero. Using Shur’s lemma this means

(Φ− λIdV ) = 0 ⇒ Φ = λIdV ∼ IdV .

D.1.2. Representations of algebras

To every Lie group there is a Lie algebra. Thus we are also interested in representations
of algebras.
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Definition D.1.12.
Let V be a K vector space and ◦ : V × V → V a bilinear operation, then the pair
(V, ◦) is called K-algebra. If the operation ◦ is associative the algebra is called
associative algebra

The distinction between associative and non-associative algebras is an important one.
Indeed, an important class of algebras we have already encountered, the Lie algebras,
are non-associative.

Definition D.1.13.
Let A be a K-algebra. An algebra homomorphism D : A → End(V ) is called
representation of the K-algebra on the vector space. In the case of a Lie
algebra a Lie algebra representation is a Lie algebra homomorphism D : A →
gl(V ) ∼= (End(V ), [•, •]).

An algebra homomorphism is a linear map H : A → A′ between two algebras, such
that

H(x ◦ y) = H(x) ◦H(y) ∀ x, y ∈ A .

In the case of Lie algebras the condition is

H([x, y]) = [H(x), H(y)] ∀ x, y ∈ A ,

of course.

Theorem D.1.14.
Let D : G→ GL(V ) be a smooth representation of a Lie group. The differential
in the neutral element is a representation DeD : g→ gl(V ) of the associate Lie
algebra.

Proof D.1.15.
It can be shown that GL(V ) is a Lie group and gl(V ) its Lie algebra. The differential
is by definition a linear map between Lie algebras (see lemma B.1.16):

DeD : TeG ∼= g −→ TD(e)GL(V ) ∼= gl(V ) .

Lemma B.1.10 shows that DeD([X, Y ]) = [DeD(X), DeD(Y )] holds.

Lemma and example D.1.16.
A unitary representation of the rotation group SO(3) on the Hilbert space L2(R3)
is given by

(D(g)f)(x) := f(g−1x) ∀x ∈ R3 .

Hence D∗ defined by

D∗(X) = DeD(X) = d

dϕ

∣∣∣∣∣
ϕ=0
D(eϕX)
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is a representation of so(3).

Proof D.1.17.
To see more easily that D is a homomorphism it is helpful to notice that g ∈ SO(3)
is a diffeomorphism R3 → R3 that can be written in the following way:

(D(g)f)(x) = ((g−1)∗f)(x) .

This also allows to prove unitarity, using g(R3) = R3 and g∗dV = dV :

〈D(g)f |D(g)h〉 =
∫
R3
f ◦ g−1 · h ◦ g−1 dV =

∫
R3

(f · h) ◦ g−1 dV

=
∫
R3

(g−1)∗(f · g dV ) =
∫
g−1(R3)

f · h dV =
∫
R3
f · h dV

= 〈f |h〉 .

Since eϕX defines a curve in SO(3) with tangent vector X in ϕ = 0, the second
claim follows from the previous theorem.

Corollary D.1.18.
The generators Ji of Rotations in SO(3) have the following representation on
L2(R3):

D∗(Ji) = −
∑
j,k

εijkxj · ∂xk

With the quantum mechanical generators Lα = i~Jα it follows that:

~L :=

D∗(L1)
D∗(L2)
D∗(L3)

 =

x1
x2
x3

×
−i~∂x1

−i~∂x2

−i~∂x3

 =: ~x× ~p .

Proof D.1.19 (Œ for J3).
Let f ∈ L2(R3), then:

D∗(J3)f = d

dϕ

∣∣∣∣∣
ϕ=0
D(eϕJ3)f = d

dϕ

∣∣∣∣∣
ϕ=0

f ◦ e−ϕJ3 = df ◦ (−J3)

⇒ (D∗(J3)f)(~x) = −df(J3~x) = −df(x1∂x2 − x2∂x1)
= −x1 · df(∂x2) + x2df(∂x1)

= x2 ·
∂

∂x1
f(~x)− x1 ·

∂

∂x2
f(~x) .
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D.2. Some important algebras

Lemma C.1.7 allows to regard tensor products as associative algebras (by isomorphy),
defining the tensor algebra:

⊗
V :=

∞⊕
n=0

V ⊗n = K
⊕

V
⊕

(V ⊗ V )
⊕

...

D.2.1. Clifford algebra and Weyl algebra

Definition D.2.1.
Let V be a K vector space with K = R or K = C. A quadratic form q : V → K
is a map with the following properties:

i) For all v ∈ V and λ ∈ K it holds that q(λv) = λ2 · q(v).
ii) The map Q(v, w) = 1

2(q(v + w)− q(v)− q(w)) is a symmetric bilinear form.

The pair (V, q) is called quadratic space.

In the finite-dimensional case, a quadratic form can be expressed by a matrix A, by
q(~x) = ~xTA~x. Some authors also call the associated symmetric bilinear form Q quadratic
form, since

Q(v, v) = q(v)

holds anyway.

Definition D.2.2.
The Clifford algebra Cl(V, q) is the free associative algebra over V ⊕K with
the restriction

v ◦ v = q(v) .

The free associative algebra is the set of all “polynomials” with “variables” from V ⊕K
and coefficients from K. The associative multiplication of variables can be understood
as the building of words from an alphabet consisting of V ⊕K:

Free(V ) 3 X =
n∑
j=1

αj
∏
`

vj,` , αj ∈ K and vj,` ∈ V ⊕K .

Now, the Clifford algebra is the same algebra with the convention, that two successive
letters can be exchanged with q(v). The bilinearity of the algebra product allows to
pull out this number as coefficient for the “word”.

Corollary D.2.3 (Clifford relation for two vectors).
For v, w ∈ V it holds that:

v ◦ w + w ◦ v = 2Q(v, w) .
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Proof D.2.4.

q(v + w) = v ◦ v + w ◦ w + v ◦ w + w ◦ v
= q(v) + q(w) + v ◦ w + w ◦ v

⇒ v ◦ w + w ◦ v = (q(v + w)− q(v)− q(w)) = 2Q(v, w) .

Remark D.2.5.
Following the literature, we will no longer use a special symbol for the Clifford
product:

ei ◦ ej ≡ eiej .

As an algebra, the Clifford algebra carries a vector space structure.

Lemma D.2.6.
Let dim(V ) = n and {e1, ..., en} be a basis of V that is orthogonal w.r.t. Q, then

{1, ei, eiej, . . . , e1 . . . en|i = 1, . . . , n, i < j, . . .}

is a basis of the Clifford algebra Cl(V,Q), in the sense of a vector space.

Proof D.2.7.
Assume the set V ⊕K to be an alphabet and let v1 . . . vk be a word of length k ≤ n.
Because of the bilinearity, the word can be decomposed into a linear combination
of words of the length k built from the sub alphabet {1, e1, . . . , en}. Hence this
sub alphabet generates all words of length ≤ n.
Assume now uv1 . . . vn to be a word of length n+ 1. Using e2

i = Q(e1), we see
that this word can be decomposed into a linear combination of words with length
n. Thus the set

{1, ei, eiej, . . . , e1 . . . en}

generates the Clifford algebra.
From lemma D.2.3, the relation between the basis vectors follows immediately:

eiej = 2Q(ei, ej)− ejei = −ejei .

Similarly to the exterior algebra it holds that

span{ei1 . . . eik |i1 < . . . < ik} = span{ei1 . . . eik} ,

with the left set being liearly independent. Hence the Clifford algebra is generated
by

{1, ei, eiej, . . . , e1 . . . en|i = 1, . . . , n, i < j, . . .}

Linear independence follows from the fact, that words of length k ≤ n cannot
be generated form words shorter than k. Formally one could use an induction
here. . .
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Similarly to the Clifford algebra, that is defined on a vector space with quadratic form,
the Weyl algebra is an associative algebra defined on a symplectic vector space. That is
a vector space with a non-degenerate alternating bilinear form (2-form).

Definition D.2.8.
Let V be a K vector space with a non-degenerate 2-form A : V × V → K. The
Weyl algebra W(V,A) is the free algebra over V ⊕K with the restriction

vw − wv = A(v, w) ∀ v, w ∈ V .

D.2.2. Exterior algebra and symmetric algebra

Definition D.2.9.
The symmetric algebra S(V ) is the free commutative algebra over V ⊕K, i.e.:

v ∨ w = w ∨ v ∀ v, w ∈ V and K .

The exterior algebra ∧(V ) is the free “alternating” algebra over V ⊕K, i.e.:

v ∧ w = −w ∧ v ∀ v, w ∈ V and K .

All of the algebras we have introduced so far can also be constructed by the tensor
algebra modulus some ring-ideal, which would also prove existence. In the case of
the symmetric and exterior algebra it can be seen, that the tensor algebra can be
decomposed into a direct sum ⊗(V ) = ∧(V )⊕ S(V ).
The algebras ∧(V ) and S(V ) are graded. This means, that there are sub-algebras∧k(V ) ⊂ ∧(V ) and Sk(V ) ⊂ S(V ), such that

∧
(V ) =

∞⊕
k=0

∧k(V ) and S(V ) =
∞⊕
k=0

Sk(V ) .

The grade k is the length of the polynomial v1 ∧ . . . ∧ vk (resp. v1 ∨ . . . ∨ vk). Since
v ∧ v = −v ∧ v = 0, polynomials of ∧(V ) can only be of length n = dim(V ), such that

∧
(V ) =

n⊕
k=0

∧k(V ) .

Lemma D.2.10.
Let dim(V ) = n and {e1, ..., en} be a basis of V , then

{ei1 ∧ . . . ∧ eik | i1 < i2 . . . < ik}

is a basis of the exterior algebra ∧k(V ), in the sense of a vector space.

Proof D.2.11.
Consider a polynomial v1 ∧ . . . ∧ vk 6= 0 of length k ≤ n. Note that vi = vj for
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i, j leads to v1 ∧ . . . ∧ vk = 0 because of v ∧ v = −v ∧ v. Because of alternating
multilinearity, it follows that polynomials of length k can be written as linear
combination of ei1 ∧ . . . eik for ij 6= ik and ij ∈ {1, . . . , n}. Hence the set

{ei1 ∧ . . . ∧ eik | i1 6= i2 6= . . . 6= ik}

generates ∧k(V ). Because of the alternation, we can exchange the order, possibly
getting a minus sign, to order the ei, such that i1 < i2 . . . < ik. Thus

{ei1 ∧ . . . ∧ eik | i1 < i2 . . . < ik}

is a basis of ∧k(V ).

Lemma D.2.12.
Let dim(V ) = n and {e1, ..., en} be a basis of V , then

{1, ei, eiej, . . . , e1 . . . en|i = 1, . . . , n, i ≤ j, . . .}

is a basis of the exterior algebra S(V ), in the sense of a vector space.

Proof D.2.13.
The proof works in the same way as the one for the exterior algebra. The only
addition is, that v ∨ v has to be admitted, such that i1 ≤ i2 ≤ . . . ≤ ik has to be
used in the last step.

For the physics, one is in general also interested in ∧(V ⊕W ) and S(V ⊕W ).

Lemma D.2.14.
For finite dimensional vector spaces, it holds that

∧p(V ⊕W ) ∼=
p⊕
q=0

∧q(V )⊗
∧p−q(W ) ,

where the isomorphy is on the vector space level.

Proof D.2.15.
Let {ei}i=1,...,n be a basis of V and fjj=1,...,m be a basis of W . Then

{(e1, 0), . . . , (en, 0), (0, f1), . . . , (0, fm)}

is a basis of V ⊕W . It is convenient to write (v, w) = v + w here, identifying
(ei, 0) = ei and (0, fj) = fj. Furthermore, we change the notation for a moment,
and set en+j = fj. From lemma D.2.10, we know that

{ei1 ∧ . . . ∧ eip | ik ∈ {0, 1, . . .m+ n} , i1 < . . . < ip}
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is a basis of ∧p(V ⊕W ). So we see, that the basis of ∧p(V ⊕W ) has the form

{(ei1 ∧ . . . ∧ eiq) ∧ (fj1 ∧ . . . ∧ fjp−q) | q ∈ {0, . . . , p} , i1 < . . . < iq , j1 < . . . < jpp−q} .

On the other hand, by theorem C.1.5,

{(ei1 ∧ . . . ∧ eiq)⊗ (fj1 ∧ . . . ∧ fjp−q) | i1 < . . . < iq , j1 < . . . < jpp−q}

is a basis of ∧q(V ) ⊗ ∧p−q(W ). In the same way, we constructed the basis for
V ⊕W , we can construct the basis for ⊕p

q=0
∧q(V )⊗ ∧p−q(W ). Up to reordering,

we find, that

{(ei1 ∧ . . . ∧ eiq)⊗ (fj1 ∧ . . . ∧ fjp−q) | q ∈ {0, . . . , p} , i1 < . . . < iq , j1 < . . . < jpp−q}

is the basis. So we can construct the isomorphism φ : ∧p(V ⊕W )
∼=−→ ⊕p

q=0
∧q(V )⊗∧p−q(W ) by its action on the basis elements:

φ : (ei1 ∧ . . . ∧ eiq) ∧ (fj1 ∧ . . . ∧ fjp−q) 7−→ (ei1 ∧ . . . ∧ eiq)⊗ (fj1 ∧ . . . ∧ fjp−q) .

Extending the map linearly makes φ a linear isomorphism.

Lemma D.2.16.
For finite dimensional vector spaces, it holds that

Sp(V ⊕W ) ∼=
p⊕
q=0

Sq(V )⊗ Sp−q(W ) ,

where the isomorphy is on the vector space level.

Proof D.2.17.
The proof is the same as for the exterior algebra, except for ≤ instead of <.

Corollary D.2.18.
The algebras ∧(V ⊕W ) and S(V ⊕W ) are bigraded with∧

(V ⊕W ) =
⊕
p,q

∧p,q(V ⊕W ) , where
∧p,q(V ⊕W ) ≡

∧p(V )⊗
∧q(W ) ,

S(V ⊕W ) =
⊕
p,q

Sp,q(V ⊕W ) , where Sp,q(V ⊕W ) ≡ Sp(V )⊗ Sq(W ) .

Proof D.2.19.
This follows from the previous lemmas and the grading of ∧ and S.
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D.3. Spinor representation

Let V ' R2n be an even dimensional real vector space with Euclidean scalar product
Q. Since the dimension is even, the basis can be split up in two parts of equal length.
Let {e1, . . . , en, f1, . . . , fn} be an orthonormal basis. To allow for complex coefficients,
we use the complexification V C (see definition C.1.9). To represent the Clifford algebra,
we intend to use something similar to a polarization of a symplectic space. That is, we
want to define subspaces P and P ∗, such that V C = P ⊕ P ∗. One possibility, using the
chosen basis, is the construction

P = spanC{c1, . . . , cn} P ∗ = spanC{c∗1, . . . , c∗n}

with cj = 1
2(ej − ifj) , c∗j = 1

2(ej + ifj) .
The Euclidean scalar product allows to regard P ∗ as dual space, since Q(c∗k, c`) = δk`.
Also, it holds that Q(ck, c`) = 0 = Q(c∗k, c∗`). Passing to the Clifford algebra Cl(V C, Q),
the relations for the basis elements of P and P∗ are

ckc` + c`ck = 0 , c∗kc
∗
` + c∗`c

∗
k = 0 , c∗kc` + c`c

∗
k = δk` .

An important observation is, that C and P are both subsets of Cl(V C, Q) and ∧(P ).

Definition D.3.1.
Let ϕ ∈ P ∗, the linear operator ϕy :

∧k(P )→
∧k−1(P ) is defined by

i) ϕya = 0 for a ∈ C.

ii) ϕyv = ϕ(v) := 2Q(ϕ, v) for v ∈ P

iii) ϕy satisfies the anti Leibniz rule: ϕy(ξ ∧ η) = (ϕyξ)∧ η+ (−1)deg(ξ)ξ ∧ (ϕyη).

The operator
v∧ :

∧k(P )→
∧k+1(P ) ,

for v ∈ P , is defined as the notation implies. Since every element in v ∈ V C ⊕ C can
be uniquely decomposed into v = vP + vP ∗ + a with vP ∈ P , vP ∗ ∈ P ∗ and a ∈ C, an
operator v◦ : ∧(P )→ ∧(P ) can be defined by

v ◦ ξ = vP ∧ ξ + vP ∗yξ + a · ξ ∀ ξ ∈
∧

(P ) .

Demanding that

(vw) ◦ ξ = v ◦ (w ◦ ξ) and (a · v + b · w) ◦ ξ = a · v ◦ ξ + b · w ◦ ξ ,

for all v, w ∈ V C⊕C, ξ ∈ ∧(P ) and a, b ∈ C, allows to extend v◦ for any v ∈ Cl(V C, Q).
Also by construction v◦ ∈ End(∧(P )).

Lemma D.3.2.
The map DS : v ∈ Cl(V C, Q) → End(∧(P )) defined by v 7→ v◦ is an algebra
homomorphism.
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Proof D.3.3.
In fact, v◦ has been constructed such that DS is linear. The homomorphy follows
equally simply from the construction of v◦:

DS(vw)(ξ) = (vw) ◦ ξ = v ◦ (w ◦ ξ) = DS(v)(DS(w)ξ) = (DS(v)DS(w))ξ .

With the algebra homomorphism DS at hand, we are ready to define the spinor
representation.

Definition D.3.4.
Let V C = P ⊕ P ∗ be a polarization of the complexified vector space V C. The
spinor representation of Cl(V C, Q) on ∧(P ) is DS.

In the same way, the spinor representation can be constructed on ∧(P ∗)

D.4. Bosonic and fermionic Fock space representations

Essentially, the following representations are extensions of the spinor representation
for Clifford and Weyl algebras on Hilbert spaces. The following lemma allows these
extensions:

Lemma D.4.1.
Let H be a Hilbert space and H∗ its dual. Then H⊕H∗ is a vector space with

i) A symmetric bilinar form Q(v + ϕ, v′ + ϕ′) = ϕ(v′) + ϕ′(v),

ii) A symplectic form A(v + ϕ, v′ + ϕ′) = ϕ(v′)− ϕ′(v),

for v, v′ ∈ H and ϕ, ϕ′ ∈ H∗.

Proof D.4.2.
The vector space property follows from the construction of H⊕H∗. Also, symmetry
and bilinearity of Q can be seen easily, as well as bilinearity and alternation of A.
It remains to show the non-degeneracy of A.
Assume A(v + ϕ, v′ + ϕ′) = 0 for all v + ϕ ∈ H ⊕H∗. Then:

ϕ(v′) = ϕ′(v) ∀ v + ϕ ∈ H ⊕H ∗ .

Assume ϕ 6= 0 and v = 0, then ϕ(v′) = 0, which can only be true, if v′ = 0.
Conversely for ϕ = 0 and v 6= 0, then ϕ′(v) = 0 is needed, which is only possible
for all non zero v, if ϕ′ = 0. Hence v′ + ϕ′ = 0.



D.4. Bosonic and fermionic Fock space representations 159

D.4.1. Fermionic Fock space representation

Let H be a Hilbert space with dual space H∗. The fermionic Fock space represen-
tation DF is the representation of Cl(H⊕H∗, Q) on ∧(H), defined by DF (v) = v◦ for
all v ∈ Cl(H⊕H∗, Q). The action v◦ is defined as in the spinor representation and the
symmetric bilinear form is the one from lemma D.4.1.

Definition D.4.3.
The anticommutator{·, ·} of two operators A,B ∈ End(H) is defined by

{A,B} = AB +BA .

Theorem D.4.4.
Let v, w ∈ Hand ϕ, η ∈ H∗, then the representations of these elements satisfy the
canonical anticommutator relations:

{DF (v),DF (w)} = 0 , {DF (ϕ),DF (η)} = 0 ,

{DF (v),DF (ϕ)} = ϕ(v) .

Proof D.4.5.
i) The first anticommutator rule is a direct consequence of v∧w = −w∧ v, since
DF (v)DF (w)ξ = v ∧ w ∧ ξ for all ξ ∈ ∧(H).

ii) Because of linearity, we can restrict to ξ = x1 ∧ . . . ∧ xm. Using DF (ϕ)v =
ϕyv = ϕ(v) and the anti Leibniz rule, we get

DF (ϕ)ξ =
m∑
j=1

(−1)j+1ϕ(xj) · x1 ∧ ... ∧ x̂j ∧ ... ∧ xm ,

where x̂j is the omission of xj. This results in

DF (η)DF (ϕ)ξ =
m∑
j=1

m∑
k=1,k 6=j

(−1)j+kϕ(xj)η(xk)

· x1 ∧ ... ∧ x̂j ∧ ... ∧ x̂k ∧ ... ∧ xm

=
m∑
j=1

m∑
k=1,k 6=j

(−1)∆j+∆k(−1)j+kϕ(xk)η(xj)

· x1 ∧ ... ∧ x̂k ∧ ... ∧ x̂j ∧ ... ∧ xm
= (−1)∆j+∆kDF (ϕ)DF (η)ξ .

In the second line, xj and xk where exchanged. This is possible, for the
summation is over all possible combinations. However, exchanging xj and
xk results in an additional sign (−1)∆j+∆k. Let ∆k be the number of pair
exchanges, to bring xk in front of xj. The number of pair exchanges ∆j to
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bring xj to the former position of xk is then one less that ∆k, i.e. ∆j = ∆k−1.
It follows that

(−1)∆j+∆k = (−1)2∆k−1 = −1 .

Hence: DF (η)DF (ϕ) = −DF (ϕ)DF (η).

iii) Again, let ξ = x1 ∧ . . . ∧ xm, then

DF (v)DF (ϕ)ξ +DF (ϕ)DF (v)ξ

=
m∑
j=1

(−1)j+1ϕ(xj) · v ∧ x1 ∧ ... ∧ x̂j ∧ ... ∧ xm

+
m∑
j=1

(−1)j+2ϕ(xj) · v ∧ x1 ∧ ... ∧ x̂j ∧ ... ∧ xm

+ ϕ(v) · x1 ∧ ... ∧ xm
= ϕ(v) · ξ .

D.4.2. Bosonic Fock space representation

Let H be a Hilbert space with dual space H∗ and A the symplectic form on H⊕H∗
from lemma D.4.1. The bosonic Fock space representation DB is a representation
ofW(H⊕H∗, A) on S(H) similar to the fermionic Fock space representation. As before
DB is defined by DB(v) = v◦ for all v ∈ W(H ⊕H∗, A). However, the action v◦ on
S(H) needs some minor changes:

w ◦ ξ := w ∨ ξ ∀ ξ ∈ S(H) , w ∈ H

and ϕy satisfies the Leibniz rule: ϕy(ξ ∨ η) = (ϕyξ) ∨ η + ξ ∨ (ϕyη).

for all ϕ ∈ H∗ and all ξ, η ∈ S(H).

Theorem D.4.6.
Let v, w ∈ Hand ϕ, η ∈ H∗, then the representations of these elements satisfy the
canonical commutator relations:

[DB(v),DB(w)] = 0 , [DB(ϕ),DB(η)] = 0 ,

[DB(v),DB(ϕ)] = ϕ(v) .

Proof D.4.7.
The proof is very similar to proof D.4.5, yet with less sign changes.
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D.5. Spin Group

For the whole section we assume the quadratic form Q to be non-degenerate, if not
specified differently.

D.5.1. Spin and pinor group

Definition D.5.1.
Let (V,Q) be a quadratic space. The pinor group Pin(V,Q) is defined by

Pin(V,Q) =
{
X ∈ Cl(V,Q)

∣∣∣ X = v1 . . . vk, k ≥ 0, v` ∈ V, with Q(v`, v`)2 = 1
}
.

From the definition, it is not hard to see, that Pin(V,Q) ⊂ Cl(V,Q) and that it is closed
under the Clifford multiplication. The pinor group can be understood as a restriction
of the Clifford algebra.

From the universal property of Clifford algebras, which is itself sufficient to completely
characterize Clifford algebras abstractly, it can be shown that there is a canonical
isomorphism α : Cl(V,Q) → Cl(V,Q). However, since we did not use the universal
property, we will characterize α using a Q-orthonormal basis {ej} and extend it linearly:

α(ej1 . . . ejk) = (−1)kej1 . . . ejk for 1 ≤ j1 < . . . < jk ≤ dim(V ) .

ChapterStart

Definition D.5.2.
The even/odd Clifford sub algebras Cl+(V,Q) and Cl−(V,Q) are defined by

Cl+(V,Q) := {X ∈ Cl(V,Q) | α(X) = X}

and Cl−(V,Q) := {X ∈ Cl(V,Q) | α(X) = −X} .

Example D.5.3.
Consider Cl2(V,Q). Every element X ∈ Cl2(V,Q) can be written as X =∑
j<kXjkejek using the basis from lemma D.2.6. Since ejek = −ekej for j 6= k on

can also write
X =

∑
j,k

Xjkejek where Xjk = −Xkj .

It is clear, that every X = ∑
j(ujvj − vjuj) = ∑

j[uj, vj] with uj, vj ∈ V is an
element of Cl2(V,Q), since

uv − vu =
∑
i,j

uivj(eiej − ejei) = 2
∑
i,j 6=i

uivjeiej

= 2
∑
i<j

(uivj − ujvi)eiej ∈ Cl2(V,Q).
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But also the opposite is true:
∑
j<k

Xjkejek = 1
2
∑
j,k 6=j

Xjk(ejek − ekej) =
∑
j

(ejvj − vjej) =
∑
j

[ej, vj] ,

with vj = 1
2
∑
k 6=j Xjkek. However this means

Cl2(V,Q) = {X ∈ Cl(V,Q) | X =
∑
j

[uj, vj] with uj, vj ∈ V } .

Lemma D.5.4.
The sub algebra Cl2(V,Q) is a Lie algebra w.r.t. the commutator.

Proof D.5.5.
The commutator satisfies all of the conditions to be a Lie bracket. We need only
show that Cl2(V,Q) is closed under the commutator. In fact, because of the
linearity of the commutator, it is sufficient to show [eiej, eke`] ∈ Cl2(V,Q) for i < j
and k < `:

[eiej, eke`] = eiejeke` − eke`eiej = −eiekeje` + 2δjkeie` − eke`eiej
= ekeieje` − 2δikeje` + 2δjkeie` − eke`eiej
= . . . = eke`eiej − eke`eiej − 2δi`ekej + 2δj`ekei − 2δikeje` + 2δjkeie`
= −2δi`ekej + 2δj`ekei − 2δikeje` + 2δjkeie` ∈ Cl2(V,Q) .

Definition D.5.6.
The spin group, Spin(V,Q) is defined as

Spin(V,Q) = Pin(V,Q) ∩ Cl+(V,Q) .

Definition D.5.7.
The Lie algebra Cl2(V,Q) is called spin algebra, spin(V,Q).

Assigning both the algebra Cl2(V,Q) and the group Pin(V,Q)∩Cl+(V,Q) with spin, is
no coincidence:

Theorem D.5.8 (see [Fri03, Satz 4.2]).
The Lie algebra of Spin(V,Q), for a real quadratic space (V,Q) is spin(V,Q).

The proof of this theorem is not trivial and requires more Lie theory and topology. On
the other hand we could understand Spin(V,Q) as the Lie algebra corresponding to
Cl2(V,Q), that results from exponentiation in the Clifford algebra. Indeed, Lie’s third
theorem states, that any finite-dimensional real Lie algebra is the Lie algebra of a Lie



D.5. Spin Group 163

group. The mentioning of exponentiation inside the Clifford algebra is important, since
different Lie groups may have the same Lie algebra.

D.5.2. Relation to the special orthogonal group

The spin group and the special orthogonal group are one example of the aforementioned
fact, that different Lie groups can have the same Lie algebra. But first we have to show,
that these Lie groups have the same Lie algebra:

Lemma D.5.9.
The map τ : spin(V,Q) → so(V,Q) defined by τ(X) = [X, ·] is a Lie algebra
isomorphism.

Proof D.5.10.
Before we can show, that the map is an isomorphism, we need to show that it is a
well defined map in the first place. Thus we need to show, that for all v ∈ V the
element [X, v] ∈ Cl(V,Q) is indeed an element of V :

[X, v] =
∑

j

(xjyj − yjxj), v
 =

∑
j

([xjyj, v]− [yjxj, v])

=
∑
j

(2[xjyj, v]− 2Q(xj, yj)[1, v])

= 2
∑
j

[xjyj, v] = 2
∑
j

(xjyjv − vxjyj)

= 2
∑
j

(xjvyj + 2Q(yj, v)− xjvyj − 2Q(xj, v)yj)

= 4
∑
j

(Q(v, yj)xj −Q(v, xj)yj) ∈ V .

To be an element of so(V,Q), the condition Q(τ(X)v, w) +Q(v, τ(X)w) = 0 has
to be satisfied:

Q(τ(X)v, w) +Q(v, τ(X)w)
= Q([X, v], w) +Q([X,w], v)
= 4

∑
j

(Q(v, yj)Q(w, xj)−Q(v, xj)Q(w, yj)

+Q(w, yj)Q(v, xj)−Q(w, xj)Q(v, yj))
= 0 .

The map τ is a Lie algebra homomorphism:

τ([X, Y ])v = [[X, Y ], v] = −[[v,X], Y ]− [[Y, v], X]
= [Y,−τ(X)v] + [X, τ(Y )v] = τ(X)τ(Y )v − τ(Y )τ(X)v
= [τ(X), τ(Y )]v .
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Since the map τ is linear between finite-dimensional vector spaces, bijectivity is
equivalent to injectivity (rank nullity theorem), which is equivalent to a trivial kernel.
Let {ei} be a Q-orthonormal basis, then X can be written as X = ∑

i<j Xijeiej.
Before we show, that ker(τ) = 0, we calculate the following

[eiej, ek] = Q(ek, ej)ei −Q(ek, ei)ej = δkjei − δkiej .

Assume τ(X) = 0, then τ(X)v = 0 for all v = ∑
k vkek ∈ V . This is equivalent to

0 =
∑
i<j

∑
k

Xijvk[eiej, ek] =
∑
i<j

∑
k

Xijvk(δkjei − δkiej)

⇒
∑
i<j

Xijvjei =
∑
i<j

Xijviej .

The former is only possible if Xij ≡ 0, due to the linear independence of {ei}. To
see that, choose i = k on the left side and j = k on the right side, then it must
hold that ∑

k<j

Xkjvj =
∑
i<k

Xikvi =
∑
j<k

Xjkvj .

Since v is arbitrary, and the left side only considers components vj for j > k while
the right side only considers components with j < k, it follows that Xjk ≡ 0, which
is equivalent to X = 0.

Since τ is an isomorphism, there has to be an inverse. To prove the construction for
the inverse map, we need the following corollary:

Corollary D.5.11.
For a Q-orthogonal basis {eα} it holds that

[[eα, eβ], eν ] = 4(δβνeα − δναeβ)

in the Clifford algebra.

Proof D.5.12.

[[eα, eβ], eν ] = eαeβeν − eβeαeν − eνeαeβ + eνeβeα

= eαeβeν − 2δαβeν + eαeβeν − eνeαeβ + 2δαβeν − eνeαeβ
= 2(eαeβeν − eνeαeβ)
= 2(2δβνeα − eαeνeβ − 2δνα + eαeνeβ)
= 4(δβνeα − δναeβ) .

Lemma D.5.13.
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Let X = Xα
ν eα ⊗ eν ∈ so(V,Q), then it holds that

τ−1(X) = 1
8X

αβ[eα, eβ] = 1
8Xαβ[eα, eβ] ,

where Xαβ = Xα
νQ

νβ.

Proof D.5.14.
The second equality is just the usual raising and lowering of indices, using the
linearity of commutator and Clifford product. To probe the first equality, it is
easier to prove:

X = τ(1
8X

αβ[eα, eβ])

⇔ Xv = Xα
ν v

νeα = [1
8X

αβ[eα, eβ], v] .

Before we start the calculation, we observe that X ∈ so(V,Q) means that X is
skew:

Q(Xv,w) +Q(v,Xw) = 0

⇔ 0 = QανX
α
β v

βwν +Qανv
βXβ

νw
ν = Xνβv

βwν +Xβνv
βwν

⇔ Xβ
ν = −Xβ

ν ⇔ Xνβ = −Xβν ⇔ Xνβ = −Xβν .

With this relation and corollary D.5.11 we calculate:

[1
8X

αβ[eα, eβ], v] = 1
8X

αβvν [[eα, eβ], eν ] = 1
2X

αβvν(δβνeα − δναeβ)
= 1

2(Xα
ν v

νeα −X β
ν vνeβ) = 1

2(Xα
ν v

νeα −X α
ν vνeα)

= Xα
ν v

νeα = Xv .

In the following we will sketch the relation between Spin(V,Q) and SO(V,Q). A
rigorous relation needs more topology and Lie theory, as was the case for the proof of
theorem D.5.8.
Let X ∈ spin(V,Q) and v ∈ V . A generalization of lemma B.1.4 for the Lie theory

allows to write:

eXve−X =
∞∑
n=0

1
n! [X, v]n =

∞∑
n=0

1
n!τ(X)nv = eτ(X)v .

Since τ(X) ∈ so(V,Q) and the exponential function is the exponential map for both
SO(V,Q) and Spin(V,Q), eX and e−X are elements of Spin(V,Q) and eτ(X) is an element
of SO(V,Q). It can be shown, that for both Lie groups the exponential map is surjective.
We can define a homomorphism

ρ : Spin(V,Q) −→ SO(V,Q) , ρ(g)v = gvg−1 ,

such that the following diagram commutes:
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spin(V,Q) Spin(V,Q)

so(V,Q) SO(V,Q)

exp

τ ρ

exp

Proof D.5.15.
First we show, that the diagram commutes, i.e. ρ ◦ exp = exp ◦τ :

((ρ ◦ exp)X)(v) = ρ(eX)v = eXv(eX)−1 = eXve−X = eτ(X)v = ((exp ◦τ)X)v .

The homomorphy follows equally direct:

ρ(gh)v = (gh)v(gh)−1 = ghvh−1g−1 = ρ(g)(hvh−1) = (ρ(g) ◦ ρ(h))(v) .



E
The Hilbert space L2(Rn)

In quantum mechanics the Hilbert space L2(Rn) may be the most known Hilbert space, as the
representation of wave mechanics uses this hilbert space. In this chapter we want to introduce the
physical conventions regarding this space, as can be found in [RW08] for example. On the other
hand we want to give fair waring about the mathematical subtleties of these conventions as is
done in [Zir13]. The conclusion of this chapter will be the spherical harmonics. We will follow
[Zir16] very closely, as it provides an introduction that gets rid of the usually annoying ansatz for
solving the partial differential equations.

The set of square integrable functions L2(Rn) is defined by

L2(Rn) := {f : Rn → C|f is integrable and
∫
Rn
|f(x)|2 dxn <∞} .

Using the equivalence relation f ∼ g, whenever f and g are equal up to null sets
(Lebesgue measure), we can define the following equivalence classes:

[f ] := {g ∈ L2(Rn)|f ∼ g} .

Definition E.0.1.
The set of equivalence classes of functions from L2(Rn) gets denoted by L2(Rn)
and is called L2 Lebesgue space . The hermitian scalar product is defined to
be

〈f, g〉 :=
∫
Rn
f(x) · g(x) dxn .

E.1. Fourier transformation

Definition E.1.1.
Let f : R → C an integrable function with

∫
R
|f(x)|dx < ∞, i.e. f ∈ L1(R).

Then:
f̃ := Ff : R −→ C , k 7−→ 1√

2π

∫
R

f(x)e−ikxdx

is called the Fourier transformed function of f .
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Remark E.1.2.
For functions f : Rn → C the Fourier transformation is defined by

F(f)(~k) = 1√
2πn

∫
Rn
f(~x)e−i〈~k,~x〉d(x1, ..., xn) .

Definition E.1.3.
The Schwartz space S(Rn) is the set of rapidly decreasing functions, defined
by:

S(Rn) = {f ∈ C∞(Rn)|∀α, β ∈ Nn
0 : sup

x∈Rn
|xα∂βf(x)| <∞} .

Proposition E.1.4 (Inverse Fourier transformation).
For function in S(Rn) there exists an inverse Fourier transformation:

f(x) = 1√
2π

∫
R

f̃(k)eikxdk .

Remark E.1.5.
It is not uncommon to choose different normalizations than 1√

2π . However, the
right pair of normalization constants for transformation and inverse transformation
have to be used. In quantum mechanics the following normalization is common:

F(f)(k) =
∫
R

f(x)e−ikxdx and F−1(f̃)(x) = 1
2π

∫
R

f̃(k)eikxdk .

One reason to study Fourier transformations is the behavior of derivatives under Fourier
transformations. This property can be used to solve differential equations. However
this does not come for free, as the inverse transformation is needed to get the wanted
representation of the solution.

Theorem E.1.6.
Let P be the derivative operator, defined by (Pf)(x) = −if ′(x) and Q the
multiplication operator, defined by (Qf)(x) = x · f(x).

(i) Let f ∈ Cm(R) and P nf ∈ L1(R), with m ≥ n, then:

F(P nf) = QnF(f)

(ii) Let Qnf ∈ L1(R). Then, for m ≥ n it follows thatF(f) ∈ Cm(R) and:

F(Qnf) = (−1)nP nF(f)
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Proof E.1.7.
We will only show the initial case n = 1. The rest follows from a simple induction.
(i) By assumption it holds that lim

x→±∞
f ′(x) = 0 and thus

lim
x→±∞

f ′(x)e−inx = 0.1Hence:

√
2π F(Pf)(k) =

∫
R

(Pf)(x)e−ikxdx =
∫
R

−if ′(x)e−ikndx

= −if(x)e−ikx|x=∞
x=−∞︸ ︷︷ ︸

=0

+
∫
R

kf(x)e−ikxdx

= k
∫
R

f(x)e−ikxdx =
√

2π QF(f)(x) .

(ii)

√
2π F(Qf)(k) =

∫
R

xf(x)e−ikxdx =
∫
R

−i d
dk
f(x)e−ikxdx

= −i d
dk

∫
R

f(x)e−ikxdx = −PF(f)(k) .

Another property of Fourier transformations, that helps calculating the inverse trans-
formation, is the behavior of convolutions.

Definition E.1.8.
Let f, g : R→ C be two functions. Then

(f ∗ g)(x) :=
∫
R

f(τ)g(x− τ)dτ =
τ=x−t

−
∫
−R

g(t)f(x− t)dt = (g ∗ f)(x)

is called the convolution of f and g.

Theorem E.1.9 (Convolution theorem).

F(f ∗ g) =
√

2πF(f) · F(g) and F(f) ∗ F(g) =
√

2πF(f · g)

Proof E.1.10.
The proof only uses the commutativity of convolutions and Fubini’s theorem, that
allows to change the order of integration.

1|eix| = 1 ∀ x ∈ R
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E.2. Physical conventions

Although we do not focus on physical properties here, we will directly call the following
quantities appropriately:

Position operator: x̂ = ~x ·

Momentum operator: p̂ = −i~∇ = −i~

∂x∂y
∂z


Angular momentum operator: L̂ = x̂× p̂

As we have already seen in corollary D.1.18, the angular momentum operator is a
representation of the generators of rotations on L2(R3). Comparing to theorem E.1.6,
one can see that the position operator is the multiplication operator and the momentum
operator is the derivative operator up to a factor ~.

Definition E.2.1.
Let |f〉 ∈ L2(R3) be a Hilbert vector. For a ~x ∈ R3 the position representation
is defined by

〈~x|f〉 = f(~x) and 〈f |~x〉 = f(~x) .

For a ~k ∈ R3, the momentum representation is defined by

〈~p|f〉 = (Ff)(~~k) and 〈f |~p〉 = (Ff)(~~k) .

Here F is the Fourier transformation with quantum mechanical normalization
convention (Ff)(k) =

∫
R3 f(~x)e−i~k·~xdx3.

The name momentum representation can be understood from the point of view of wave
mechanics and the De-Broglie relation. The momentum of a matter wave with wave
vector ~k is ~p = ~~k.

Definition E.2.2.
Let A be an operator. The notation for the position representation of the operator
is

〈~x|A|f〉 = Af(~x) .

This notation becomes more transparent, when one compares the position representation
of 〈g|A|f〉 with the formal definition on L2(R3):

∫
R3
g(~x)Af(~x) dx3 = 〈g|A|f〉 =

∫
R3
〈g|~x〉〈~x|A|f〉 dx3 .

Theorem E.1.6 allows to express momentum and position operator in both the position
and momentum representation:
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position representation momentum representation

x̂ x· i~∇p

p̂ −i~∇x p·

Pseudo eigen vectors and mnemonics

The Dirac notation gives rise to the, at first sight subtle, but conceptually important,
question of the meaning of 〈~x|, 〈~p|, |~x〉 and |~p〉. These objects seem harmless enough.
In the physical literature they are even used to define a (pseudo) completeness relation:∫

R3
|~x〉〈~x| dx3 = 1 = 1

(2π~)3

∫
R3
|~p〉〈~p| dp3 .

The object |~x〉 is supposed to be an eigen state of the position operator x̂, with
x̂|~x〉 = ~x|~x〉. Similarly the momentum state is tired to be defined by p̂|~p〉 = ~p|~p〉.
However, these definitions do not work out mathematically. The objects are no

elements of the Hilbert space L2(R3):

f(~x) = 〈~x|f〉 = 〈f |~x〉 =
∫
R3
f(~r)ξx(~r) dr3

⇒ |~x〉 = ξx(·) = δ(~x− ·) 6∈ L2(R3) ,∫
R3
f(~x)e−i

~x·~p
~ dx3 = 〈~p|f〉 =

∫
R3
ξp(~x)f(~x) dx3

⇒ 〈~x|~p〉 = ξp(~x) = ei
~x·~p
~ ⇒ |~p〉 6∈ L2(R3) .

These mathematical inconsistencies are not only a warning to be careful using Dirac
notation, but can serve to understand the meaning of it better. By construction, terms
like f(~x) for f ∈ L2(Rn), or in Dirac notation 〈~x|f〉, have no meaning on their own.
The reason is, that f ∈ L2(Rn) does actually mean the equivalence class [f ]. Since a
single point is a null set, something like [f ](~x) has no meaning, it can be chosen to be
anything. However, since

∫
U〈~x|f〉 dx3 is well defined, the term 〈~x|f〉 can be understood

as density function, that has to be integrated over. Put differently, 〈~x|f〉 defines the
regular distribution Tf . In that point of view, the term 〈~x|~y〉 = δ(~y − ~x) can be made
sense of, by understanding it as the singular delta distribution δ~y.2

E.3. Spherical harmonics

The position/momentum representation of quantum mechanics are the first represen-
tations one encounters. Thus they take a prominent role in solving problems. One
important class of problems involves the angular momentum and its eigen states.

2There is no such thing as a delta function. Indeed it can be proven, that the delta function is not
regular.



172 Appendix E. The Hilbert space L2(Rn)

E.3.1. Definitions and propositions

Definition E.3.1.
The solution on [−1, 1] of the differential equation

(1− x2) · f ′′(x)− 2x · f ′(x) + `(`+ 1) · f(x) = 0

is called `-th Legendre polynomial P` for all ` ∈ N0. The solutions on [−1, 1]
of the differential equation

(1− x2) · f ′′(x)− 2x · f ′(x)
(
`(`+ 1)− m2

1 + x2

)
f(x) = 0

are called associated Legendre polynomials P`,m for all `,m ∈ N0 with
0 < m < `.

Proposition E.3.2.
The following equalities hold:

1. P`(x) = 1
2``!

(
d

dx

)`
(x2 − 1)`

2. P`(x) = 1
2π

∫ 2π

0
x−
√
x2 − 1 cos(φ) dφ

⇒ P`(cos(θ)) = 1
2π

∫ 2π

0
cos(θ)− i sin(θ) cos(φ) dφ

3.
∫ 1

−1
P`(x)P`′(x) dx = 2

2`+ 1δ``
′

4. P`(−x) = (−1)`P`(x)

5. P`,m(x) = (−1)m(1− x2)m2
(
d

dx

)m
P`(x)

Definition E.3.3.
The spherical harmonics Y`,m : [0, π] × [0, 2π] → C are functions, that solve
the following differential equations simultaneously:(

1
sin(θ)∂θ sin(θ)∂θ + 1

sin2(θ)∂
2
φ

)
Y`,m = −`(`+ 1)Y`,m

−i∂φY`,m = mY`,m

Proposition E.3.4.
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The spherical harmonics are orthonormal, i.e.:∫
S2
Y`,mY`′,m′ dΩ = δ``′ · δmm′ .

There is a normalization factor N`m = 1√
2π

√
2`+1

2
(`−m)!
(`+m)! , such that:

Y`,m(θ, φ) = N`me
imφP`m(cos(θ)) .

E.3.2. “Algebraic” construction of the spherical harmonics

The word “algebraic” is used rather informally here. Usually, to find the spherical
harmonics, the differential equations defining them are solved directly, resulting in
tedious calculations, giving not much inside at all. Here we want to use a different way
to introduce the spherical harmonics, as is done in [Zir16]:
Before doing so, we need the Laplace operator in spherical coordinates:

∆f = ?d ? d f = ?d ? (∂rf dr + ∂θf dθ + ∂φf dφ)

= ?d

(
r2 sin(θ)∂rf [dθ ∧ dφ,R] + sin(θ)∂θf [dφ ∧ dr,R] + ∂φf

sin(θ) [dr ∧ dθ,R]
)

= ?

(
1
r2∂rr

2∂rf + 1
r2 sin(θ)∂θ sin(θ)∂θf + 1

r2 sin2(θ)∂
2
φf

)
dV

=
(

1
r2∂rr

2∂r + 1
r2

(
1

sin(θ)∂θ sin(θ)∂θ + 1
sin2(θ)∂

2
φ

))
f

=: (∆r + 1
r2 ∆S2)f .

In the last line we defined the spherical Laplace operator ∆S2 .
We are looking for a differential operator D` of `-th order, such that

i) D` ◦∆ = ∆ ◦D`

ii) D`
1
r

=
F`(xr ,

y
r
, z
r
)

r`+1 , where F` is a polynomial of degree `.

Lemma E.3.5.
The function F` is an eigen function of −∆S2 with eigen value `(`+ 1).

Proof E.3.6.
0 = ∆1

r
= D`∆

1
r

= ∆D`
1
r

= ∆ F`
r`+1 = `(`+ 1) F`

r`+1 + ∆S2
F`
r`+1 .
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Example E.3.7.
Let eu, ev ∈ R3 be orthonormal vectors, then D` = (Leu+iev)` is an operator of the
kind we are looking for.

Proof E.3.8.
In Cartesian coordinates (u, v, w) the Laplace operator has the form ∆ = ∂2

u+∂2
v+∂2

w.
The Lie derivative acting on functions is given by Lv = ι(v) ◦ d. Thus

Leu+iev = ∂u + i∂v .

Hence Leu+iev commutes with ∆ and so does (Leu+iev)` commute with ∆.
With r =

√
u2 + v2 + w2 we see that

Leu+iev
1
r

= u+ iv

r2 .

From Leu+iev(u+ iv) = 0, using an iteration, the claim follows. We have also found
the form of the polynomial F`:

F`(u, v, w) = (u+ iv)`

Corollary E.3.9.
A special case is the operator (Lez+iex)`.

Corollary E.3.10.
Let D` = (Lez+iex)`, then F` has the form

F`

(
x

r
,
y

r
,
z

r

)
=
(
z

r
+ i

x

r

)`
= (cos(θ) + i sin(θ) cos(φ))` ,

and is an eigen function of −∆S2 with the eigen values `(`+ 1).

The spherical harmonics are given by the following expansion

(cos(θ) + i sin(θ) cos(φ))` =
∑̀
m=−`

cm,`Ym,`(θ, φ) ,

and the following conditions:

Y`,m(θ, φ+ α) = eimα Y`,m(θ, φ) and
∫
S2

|Y`,m|2 dΩ = 1 .

The first condition can be used to calculate the spherical harmonics:

F`(θ, φ+ α) =
∑̀
m=−`

eimαcm,`Ym,`(θ, φ) .
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We are now looking for the part of F` that is proportional to eimα for φ 7→ φ+ α. This
can be achieved by integration:

2π∫
0

e−imαF`(θ, φ+ α) dα =
2π∫
0

e−imα
∑̀
m=−`

eimαcm,`Ym,`(θ, φ) dα

= βYm,`(θ, φ) ,

where the coefficient β has to be determined with the normalization condition, and
the convention Y`,m = (−1)mY`,−m. It remains to show, that these functions solve the
defining differential equations:

Theorem E.3.11.
The spherical harmonics satisfy:

−∆Y`,m = `(`+ 1)Y`,m ,

−i∂φY`,m = mY`,m ,

P̂ Y`,m = (−1)`Y`,m ,

where we define P̂ f(~r) = f(−~r); (P̂ is called parity operator).

Proof E.3.12.
The function F` and all relevant derivatives are bounded by integrable functions,
such that integration and derivative can be exchanged:

−∆βY`,m = −∆
2π∫
0

e−imαF`(θ, φ+ α) dα =
2π∫
0

e−imα −∆F`(θ, φ+ α) dα .

Since ∆ = (∆r + 1
r2 ∆S2) and r = 1 on the 2-sphere, using corollary E.3.10, we have

proven the first equation.
The second equation follows from

∂φY`,m = lim
α→0

Y`,m(θ, φ+ α)− Y`,m(θ, φ)
α

= lim
α→0

eimα − e0

α
Y`,m(θ, φ)

= ∂αe
imαY`,m(θ, φ) = imY`,m(θ, φ) .

The last equation can easily be seen, using the parity operator in spherical
coordinates: (r, θ, φ)→ (r, π − θ, φ+ π).

Put in the physical context, the spherical harmonics are eigen functions of the angular
momentum operator:

Corollary E.3.13.
The squared angular momentum is L̂2 = −~∆. Using spherical coordinates, one
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can show L̂z = −i~∂φ. Hence, the spherical harmonics satisfy:

L̂2Y`,m = `(`+ 1)~2Y`,m ,

L̂zY`,m = m~Y`,m .



F
Distributions and Green’s functions

Distributions are the mathematical foundation for many informal calculations in physics. The
prime example would be the delta function, that can be found in most physics books. In addition
to a more rigorous formulation, distributions allow to solve linear partial differential equations with
constant coefficients and give the motivation for Green’s functions. Here we will follow [Zir16]
and partly [KW06, chapter 12] closely

F.1. Distributions

Distributions are linear functionals on a restricted space of functions, the so called test
functions. The meaning of continuity needs the choice of a topology as well, such that
some work is needed, before we can give the definition of distributions.

F.1.1. Test functions

In the following we will sometimes use the short hand notation Mit
∫
f dλ to denote the

(Lebesgue) integration of f . If the functions is also Riemann-integrable it holds that∫
f dλ =

∫
f(x) dxn .

Definition F.1.1 (Multi index notation).
A multi index is a tupel α = (α1, ..., αn) ∈ Nn

0 . The norm of a multi index is

|α| = α1 + ...+ αn .

A common usage of multi indices is the short hand notation of partial derivatives:(
∂

∂x1

)α1

· ... ·
(

∂

∂xn

)αn
= ∂α .

Definition F.1.2.
The support supp(f) of a function f : Rn → C, is

supp(f) := {x ∈ Rn|f(x) 6= 0} = {x ∈ Rn|f(x) 6= 0} ∪ ∂{x ∈ Rn|f(x) 6= 0} .

Let Ω ⊂ Rn be open and not empty. The set of Ck-functions f : Ω→ K witch compact
support in Ω commonly is denoted by

Ck
c (Ω) := {f ∈ Ck(Ω)|supp(f) ⊂ Ω is compact} .
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Lemma F.1.3.
Let f, g ∈ Ck

c (X), where X ⊂ Rn can be written as direct product, and let α ∈ Nn

be a multi index with |α| ≤ k, then:∫
X

(∂αf) · g dλ = (−1)|α|
∫
X

f · ∂αg dλ .

Proof F.1.4.
It is enough to use partial integration and Fubini’s theorem. Let Œ ∂α = ∂α

′ ◦ ∂x1 ,
i.e. |α′| = |α| − 1,. By assumption X = X ′ ∪ I:

∫
X

∂αf · g dλ =
∫
X′

∫
I

∂α
′
∂x1f(x1, ..., xn) · g(x1, ..., xn) dx1

 dx2...dxn

=
∫
X′

(
∂α
′
f(x1, ..., xn) · g(x1, ..., xn)

∣∣∣
∂I

−
∫
I

∂α
′
f(x1, ..., xn) · ∂x1g(x1, ..., xn) dx1

 dx2...dxn

The functions have compact support in X, hence:

∂α
′
f(x1, ..., xn) · g(x1, ..., xn)

∣∣∣
∂I

= 0

and thus:
∫
X′

∫
I

∂α
′
∂x1f(x1, ..., xn) · g(x1, ..., xn) dx1

 dx2...dxn

= −
∫
X′

∫
I

∂α
′
f(x1, ..., xn) · ∂x1g(x1, ..., xn) dx1

 dx2...dxn

Repeating the above steps proves the claim.

Definition F.1.5.
C∞-functions with compact support in Ω, f ∈ C∞c (Ω), are called test functions.
The set of test functions is denoted by D(Ω) ≡ C∞c (Ω).

Lemma F.1.6.
The function f : R→ [0,∞), t 7→ f(t) with

f(t) =
{
e
−1
t t > 0

0 t ≤ 0

is smooth on R.
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Figure F.1.: Plot of f(t) from lemma F.1.6

Proof F.1.7.

1. For t 6= 0 it is a composition of C∞-functions, and thus smooth.

2. It is sufficient to show lim
t→0

e−
1
t

tn
= 0:

lim
t→0

∣∣∣∣∣∣e
− 1
t

tn

∣∣∣∣∣∣ = lim
x→∞

∣∣∣∣∣ e−xx−n

∣∣∣∣∣ = lim
x→∞

∣∣∣∣xnex
∣∣∣∣ ≥ lim

x→∞

∣∣∣∣ xnx+1

∣∣∣∣ = 0 .

Theorem F.1.8.
For all ε > 0 there is a test function jε ∈ D(Ω), called bump function, such
that:

jε ≥ 0 , supp(jε) = Bε(0) and
∫

Ω
jε dλ = 1 .

Proof F.1.9.
Let ψε : Rn → [0,∞), x 7→ ψε(x) be defined by

ψε(x) =
 e

−1
1−||x||2/ε2 ||x|| < ε

0 else
.

By construction: supp(ψε) ⊆ Bε(0). The C∞-differentiability follows from lemma
F.1.6. Thus ψε ∈ D(Ω). Using the following normalization, the last property of jε
can be realized:

jε = ψε∫
Ω
ψε dλ

.



180 Appendix F. Distributions and Green’s functions

Definition F.1.10.
The convolution of functions f, g : Rn → K is defined by:

(f ∗ g)(x) =
∫
Rn
f(y) · g(x− y) dyn .

Lemma F.1.11.
For f ∈ Ck

c (Rn) and g ∈ Llok(Rn) it holds that:

i) The convolution is k-times differentiable f ∗ g ∈ Ck(Rn).

ii) The first k partial derivatives commute with the convolution integral:

∂α(f ∗ g) = (∂αf) ∗ g f"ur |α| ≤ k .

iii) supp(f ∗ g) = supp(f) + supp(g) := {x+ y ∈ Rn|x ∈ supp(f), y ∈ supp(g)}.

iv) Let A = supp(g), then:

jε ∗ g ∈ C∞(Rn) and supp(jε ∗ g) ⊂
⋃
a∈A

Bε(a) .

Definition F.1.12.
Let f : Ω ⊂ Rn → K be local inetgrabl and set f(x) = 0 ∀ x ∈ Rn \ Ω. The set
of functions fε = f ∗ jε is called smoothing of f .

Example F.1.13 (Heaviside function).
The Heaviside function is Θ : R→ {0, 1}, x 7→ χ[0,∞)(x).
The smoothing of Θε = Θ ∗ jε strictly monotonically increasing on [−ε, ε], and
Θε(x) = 0 for x ≤ −ε and Θε(x) = 1 for x ≥ ε. These properties follow from the
convolution integral:

Θε(x) =
∫
R

Θ(x− y)jε(y)dy =
x∫
−ε

jε(y) dy

x

y

1
Θ(x)
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x

y Θε(x)

ε−ε

Theorem F.1.14.
i) Let f ∈ L1

loc(Ω) and fε = f ∗ jε, then, for every compact subset K ⊂ Ω:

lim
ε→0

∫
K

|f − fε| dλ = 0 .

ii) Let Ω be open and f ∈ C0(Ω) with supp(f) ⊂ Ω, then:

∃ ε > 0 ∀ r < ε : fr = f ∗ jr ∈ D(Ω) and fr
r→0−→ f uniformly in Ω .

Corollary F.1.15.
• The set test functions is dense in L1

lok(Ω) with respect to the L1-norm.

• The set of test functions is dense in C0
c (Ω) w.r.t. the uniform norm.

F.1.2. Distributions

To define distributions a stronger sense of convergence is needed on D := C∞c (Rn).

Definition F.1.16.
Let (fn) be a sequence of test functions fn ∈ D. This sequence is called conver-
gent on Dtest function! convergence with limit f ∈ D, ief:

i) ∃ K ⊂ Rn compact, such that supp(fn) ⊂ K ∀ n ∈ N.

ii) ∀ α ∈ Nn : ∂αfn −→ ∂αf uniformly for n→∞.

In this case we write fn D→ f n→∞.

Definition F.1.17.
A continuous linear map T : D → C is called distribution . Continuity means

fn
D→ f ⇒ T [fn] n→∞−→ T [f ] .

The vector space of distributions is denoted by D ′.
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Theorem F.1.18.
Let f : Rn → C with f ∈ L1

lok(Rn). The map Tf : D → C defined by

Tf [ϕ] =
∫
Rn
f · ϕ dλ für ϕ ∈ D

is a distribution.

Proof F.1.19.
Let (ϕn) be a convergent sequence in D. That means, there is a compact set
K ⊂ Rn with supp(fn) ⊂ K, ∀ n ∈ N, such that the integrals exist. It follows:

|Tf [ϕn]− Tf [ϕ]| def.=
∣∣∣∣∣∣
∫
Rn
f · (ϕn − ϕ) dλ

∣∣∣∣∣∣ ≤ max
x∈K
|ϕn(x)− ϕ(x)| ·

∫
K

f dλ
n→∞−→ 0 .

Linearity is a property of the integral.

Definition F.1.20.
A distribution that can be defined by a function f with the help of integration
T = Tf is called regular distribution. Otherwise the distribution is called
singular.

Definition F.1.21.
Let (Tn) be a sequence of distributions in D. This sequence is called convergent
in D′ with limit T , if:

Tn[ϕ] n→∞−→ T [ϕ] ∀ ϕ ∈ D .

In that case we write Tn D
′

−→ T .

Considering a function f ∈ C1(Rn), then

(T∂if )[ϕ] =
∫
Rn
∂if · ϕ dλ = −

∫
Rn
f · ∂iϕ dλ = −Tf [∂iϕ]

because of the compact support. This motivates the following definition:

Definition F.1.22.
Let T ∈ D ′ be a distribution and α ∈ Nn a multi index. The partial derivative
∂αT is defined by:

(∂αT )[ϕ] = (−1)|α| T [∂αϕ] .

Understanding functions as regular distributions, the previous definition allows to
differentiate L1

loc-functions. However, since these functions are not differentiable in the
usual sense, these derivatives are called weak derivative.
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Definition F.1.23.
Let f ∈ C∞(Rn) and T ∈ D ′, then f · T is defined by

(f · T )[ϕ] = T [f · ϕ] .

Corollary F.1.24.
Weak derivatives satisfy the product rule: ∂i(f · T ) = (∂if) · T + f · ∂iT .

F.1.3. Delta distribution

A very important distribution is the Delta distribution δx ∈ D ′, defined by
δx[f ] = f(x) .

In physics books one often finds Delta functions, however, the following theorem shows
that no such thing exists:

Theorem F.1.25.
The Delta distribution δx is singular.

Proof F.1.26 (Œ for x = 0 and R).
Suppose there is a function δ(x), such that Tδ = δ0. Then∫

R

δ(x) · ϕ(x) dx = ϕ(0) ∀ ϕ ∈ D .

Consider the function

ϕb(x) =
 e

b2
x2−b2 , |x| < b

0 , |x| ≥ b
⇒ δ0[ϕb] = e−1 .

An estimate of the integration results in a contradiction:

ϕb(0) = |ϕb(0)| =
∣∣∣∣∣∣
∫
R

δ(x) · ϕb(x) dx
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
b∫
−b

δ(x) · ϕb(x) dx

∣∣∣∣∣∣∣
≤ sup

x∈[−b,b]
|ϕb(x)|︸ ︷︷ ︸

=ϕb(0)

·
b∫
−b

|δ(x)| dx .

For b small enough, it holds that
b∫
−b
|δ(x)| dx < 1, and thus ϕb(0) ≤ c · ϕb(0) for

c < 1.

Although there is no Delta function, there are sequences of functions (δn), called Dirac
sequences, such that

lim
n→∞

∫
R

δn(x) · ϕ(x) dx = ϕ(0) .
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Example F.1.27.
As Dirac sequence we use rectangle functions:

tn : [−1, 1] −→ R, x 7−→
{

n
2 , x ∈ [− 1

n
, 1
n
]

0 , sonst .

With the mean value theorem, that says

∀ f ∈ C0([a, b]) ∃ ξ ∈ [a, b] :
b∫
a

f(x) dx = f(ξ) · (b− a) ,

we find:

∀ n ∈ N ∃ξn ∈
[
− 1
n
,

1
n

]
: Ttn [ϕ] =

1/n∫
−1/n

n

2ϕ(x) dx = n

2ϕ(ξn) · 2
n

n→∞−→ ϕ(0) .

Hence:
lim
n→∞

Ttn = δ0 .

F.2. Fundamental solutions and Green’s functions

Distributions can be used to solve linear partial differential equations. A central concept
therefore are fundamental solutions, that are closely related to Green’s functions.

Definition F.2.1.
Let α ∈ Nn be a multi index and cα ∈ C0(Rn) be a continuous function. Then

L =
∑
|α|≤m

cα · ∂α

is called a linear differential operator of order m on Rn.

Definition F.2.2.
The formally adjoint operator L∗ of L is defined by

L∗f =
∑
|α|≤m

(−1)|α|∂α(cα · f) .

Lemma F.2.3.
Let ϕ ∈ Cm

c (Rn) and f ∈ Cm(Rn), then for every linear differential operator L of
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order m, it holds that: ∫
Rn
fL∗ϕ dλ =

∫
Rn
Lf · ϕ dλ .

Proof F.2.4.
All we need is lemma F.1.3:∫

Rn
fL∗ϕ dλ =

∑
|α|≤m

(−1)|α|
∫
Rn
f∂α(cα · ϕ) dλ


=

∑
|α|≤m

∫
Rn
∂αf · (cα · ϕ) dλ


=

∑
|α|≤m

∫
Rn
cα∂

αf · ϕ dλ

 =
∫
Rn
Lf · ϕ dλ .

Definition F.2.5.
Let L be a linear differential operator of order m. A function u ∈ L1

loc(Ω) is
called weak solution with inhomogenity f ∈ L1

loc(Ω) of the differential equation
Lu = f , if: ∫

Ω

u L∗ϕ dλ =
∫
Ω

f · ϕ dλ ∀ ϕ ∈ D .

Theorem F.2.6.
Let Lu = f be a differential equation with f ∈ C0(Ω), then:

A function u ∈ Cm(Ω) is a weak solution ⇔ u is a classical solution.

Proof F.2.7.
If Lu = f is satisfied, then

∫
ΩLu ·ϕ− f ·ϕ dλ = 0 ∀ ϕ ∈ D. The reverse direction

is a consequence of the fundamental lemma of variational calculus. The rest follows
from lemma F.2.3.

Corollary F.2.8.
Let u, f ∈ L1

loc(Rn) and let L be a liner differential operator. Considering the
differential equation Lu = f together with the definition of regular distributions
Tu, we find

LTu = Tf ⇔ u is a weak solution of Lu = f .

This corollary motivates to generalize differential equations to distributions:
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Definition F.2.9.
Let L be a linear differential operator. A distribution U ∈ D′ is called funda-
mental solution for L with pole x ∈ Rn, if:

LU = δx .

Fundamental solutions are not unique. If T is a solution of LT = 0, and U is a
fundamental solutions, so is T + U .

Definition F.2.10.
Let T ∈ D′ be a distribution and ϕ ∈ D a test function. The convolution T ∗ϕ
is defined by

(T ∗ ϕ)(x) = T [ϕ ◦ τx] ,
with τx(y) = x− y.

Lemma F.2.11.
It holds that: δ0 ∗ ϕ = ϕ

Theorem F.2.12.
Let U ∈ D′ be a distribution and ϕ ∈ D. Then the function u = T ∗ ϕ is in
C∞(Rn) and

∂iu = (∂iT ) ∗ ϕ .

Proof F.2.13 (Œ in one dimension).

u′(x) = lim
h→0

u(x+ h)− u(x)
h

= lim
h→0

T [ϕ ◦ τx+h]− T [ϕ ◦ τx]
h

= lim
h→0

T
[
ϕ ◦ τx+h − ϕ ◦ τx

h

]
= T [−ϕ′ ◦ τx] = T ′[ϕ ◦ τx] = T ′ ∗ ϕ

Corollary F.2.14.
Let L be a linear differential operator with constant coefficients, then:

L(T ∗ ϕ) = (LT ) ∗ ϕ

The reason to consider fundamental solutions is the following theorem:

Theorem F.2.15.
Let L be a linear differential operator with constant coefficients and T ∈ D′ be a
fundamental solution with pole in 0.
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i) Let ϕ ∈ D be a test function, then u := T ∗ ϕ is a solution of

Lu = ϕ .

ii) If T is a regular distribution to g ∈ L1
locRn , i.e. T = Tg, then u = g ∗ f is a

weak solution of
Lu = f .

Proof F.2.16.
1.

L(T ∗ ϕ) = (LT ) ∗ ϕ = δ0 ∗ ϕ = ϕ .

2. Because of F.2.8 it is enough to show, that LTu = Tf holds. Using Fubini’s
theorem:

(LTu)[ϕ] = Tu[L∗ϕ] =
∫
Rn

∫
Rn
g(y − x)f(x)dxn L∗ϕ(y) dyn

=
∫
Rn

∫
Rn
g(y − x)L∗ϕ(y) dyn f(x)dxn

=
∫
Rn
Tg[L∗(ϕ ◦ τy)](x) f(x)dxn

=
∫
Rn

(LTg ∗ ϕ)(x)f(x) dxn =
∫
Rn

(δ0 ∗ ϕ)(x)f(x) dxn

=
∫
Rn
f(x)ϕ(x) dxn = Tf [ϕ] .

Definition F.2.17.
A Green’s function G(y, x) for a linear differential operator L is a fundamental
solution with pole in y: LTG = δy, where TG is the regular distribution w.r.t.
x 7→ G(y, x).

Using the delta function notation of physics literature, Green’s functions have to satisfy
LG(y, x) = δ(x− y).

Definition F.2.18.
We define the shift of a function to be

vyf(x) = f(y − x) .

For a distribution we set
vyU [ϕ] = U [v−yϕ] .
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Lemma F.2.19.
Let U be a fundametal solution with pole in y, for an L with constant coefficients.
Then v−yU is a fundamental solution with pole in 0.

Proof F.2.20.

L(v−yU)[ϕ] = U [vyL∗ϕ] = [L∗vyϕ] = LU [vyϕ] = δy[vyϕ] = ϕ(y − y) = ϕ(0) .

Corollary F.2.21.
Let G(y, x) be a Green’s function, then g(x) = G(y, y−x) is a fundamental solution
with pole in 0. That is: g(y−x) = G(y, x). The solution of the differential equation
Lu = f is u(y) = (g ∗ f)(y). Thus the (weak) Green’s function has the following
defining property:

u(y) =
∫
Rn
g(y − x)f(x)dxn =

∫
Rn
G(y, x)f(x)dxn .

Proof F.2.22.
All that has to be shown here is, that v−yTG = TG′ with G′(y, x) = G(y, y − x):

v−yTG[ϕ] = TG[vyϕ] =
∫
Rn
G(y, x)ϕ(y − x)dxn x=y−z=∫

Rn
G(y, y − z)ϕ(z)dzn = TG′ [ϕ] .

F.3. Fourier transformation of tempered
distributions

Using the Schwartz space together with a stronger sense of convergence allows to define
a tempered distributions, that act on a larger class of functions:

ϕk
S−→ ϕ , k →∞ ⇔ xα∂βϕk → ϕ ∀ α, β ∈ Nn

0 .

Definition F.3.1.
A tempered distribution T on Rn is a continuous linear map S(Rn) → C.
The vector space of tempered distributions is denoted by S ′(Rn).
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test functions: C∞c (Rn) ≡D(Rn) ⊂ S(Rn) ⊂ C(Rn) ≡ C∞(Rn)
distributions: D′(Rn) ⊃ S ′(Rn) ⊃ C ′(Rn)

It can be shown, that distributions with compact support are tempered distributions.
The motivation to define this kind of distribution is the Fourier transformation:

Definition F.3.2.
The Fourier transformation FTof a tempered distribution T is defined by:

FT [ϕ] = T [Fϕ] .

Theorem F.3.3.
i) The Fourier transformation of a tempered distribution is again tempered.

ii) The Fourier transformation F : S ′ → S ′ is a bijection.

iii) The multiplication and derivatives behave as usual:

F(∂αT ) = i|α|kαFT and F(kαT ) = (−1)|α| · i|α|+1FT .

A common usage of tempered distributions in quantum mechanics is the connection
between Delta distributions and exponential functions ea(x) := eixa:

Lemma F.3.4.

Fδa = 1
(
√

2π)n · Te−a and 1
(
√

2π)n · FTea = δa .

Proof F.3.5.

Fδa[ϕ] = δa[Fϕ] = (Fϕ)(a) = 1
(
√

2π)n

∫
Rn
e−iax · ϕ(x) dxn

=
(

1
(
√

2π)n · Te−a
)

[ϕ] ,

FTea [ϕ] = Tea [Fϕ] =
∫
Rn
eiak(Fϕ)(k) dkn = (

√
2π)nF−1(Fϕ)(a)

= (
√

2π)nϕ(a) = (
√

2π)nδa[ϕ] .

Adopting the notation of physics textbooks, that is writing also singular distributions
with integral kernel, the delta distribution has the formal representation as delta
function, δa  δ(• − a). Thus the action of the delta distribution can be written (only
symbolically) as integral

δa[ϕ] =
∫
Rn
dxnδ(x− a)ϕ(x) .
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Converting the last lemma to this notation, we get

f(x) = eiqx f̂(k) = δ(k − q) .(
√

2π)nF

Using the lemma in this notation leads to some kind of orthonormality normalization
of the integral kernels eiqx and e−ipx:

1
(
√

2π)n
∫
Rn
eiqxe−ipx dxn = 1

(
√

2π)n
∫
Rn
ei(q−p)x dxn = δ(p− q) .

Proof F.3.6.
Using the integration kernel notation, we find:

FTeq [ϕ] = 1
(
√

2π)n
∫
Rn
eiqx

∫
Rn
e−ipxϕ(p) dpn dxn

=
∫
Rn

1
(
√

2π)n
∫
Rn
eiqxe−ipxdxnϕ(p) dpn

= δq[ϕ] =
∫ n

R
δ(p− q)ϕ(p) dpn .

It should be mentioned, that the last equation is only symbolical, meaning that
δ(p − q) needs to be understood as tempered distribution, that has to be integrated
against. We might be in some trouble, since δ(p − q) = δ(q − p), and it could be
suggested to integrate over q instead of p. However, formally we also have

1
(
√

2π)n
· F−1Te−q = δq  

1
(
√

2π)n
· 1

(
√

2π)n
∫
Rn
ei(q−p)x dxn = δ(q − p) .



G
Variational calculus for fields

In this chapter we cover the fundamentals of variational calculus. We introduce the mathematical
notion of functionals and the concepts, as well as properties, of their derivatives, following [Wer11,
chapter III.5]. In the second section we focus on the important class of functionals that can be
expressed by Lagrange-densities, deriving the Euler-Lagrange-equations. We conclude this chapter
by discussing notations of the physical literature, used in [AS10] for example.

G.1. Functional derivative and variation

In variational calculus (e.g. in the context of least action) the goal is to find functions,
that minimize or maximize a given functional. In general a functional is a map from
a normed space X into its number field. Recalling, that for functions f : R → R a
vanishing first derivative is a necessary condition for extrema, we are looking for a
similar computational tool in the case of functionals. We will see, that there is a concept
of derivative, that is not only connected to the concept of variations, but also the
computational tool we are looking for.

Definition G.1.1.
Let F : U(x0) ⊂ X → R be a functional defined on a neighborhood containing
x0. The n-th variation δnF (x0;h) of F in direction of h ∈ X is defined, if it
exists, by

δnF (x0;h) = dn

dtn
F (x0 + th)

∣∣∣∣∣
t=0

.

The variation resembles the directional derivative of multivariable calculus. This leads
to the following definition:

Definition G.1.2.
Let F be a functional as before. If δF (x0;h) exists for all h ∈ X and there is a
linear continuous functional L : X → R, such that

L(h) = δF (x0;h) ∀ h ∈ X ,

the functional is called Gâteaux-differentiable in x0. The linear continuous
functional is called the Gâteaux-derivative Ĝx0F of F in x0. Accordingly F is
called Gâteaux-differentiable on X if it is Gâteaux-differentiable in all x ∈ X.

As in multivariable calculus, we are not only interested in the directional derivative, but
also for the derivative itself. Even in the finite-dimensional case, the existence of the
directional derivative in every direction is not enough to prove the existence of the total
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derivative. Writing the definition of the Gâteaux-derivative slightly different reveals the
generalization necessary to define an analogue to the total differential:

lim
t→0

|F (x0 + th)− F (x0)− tĜx0F (h)|
t

= 0 .

In this form one can see easily the similarity to the directional derivative. In the
finite-dimensional case one demands the sequence to be uniformly convergent to define
the total differential, motivating the following definition:

Definition G.1.3.
Let F : U(x0) ⊂ X → R be a functional on a neighborhood around x0. The
functional is said to be Fréchet-differentiable in x0, if there is a continuous
linear functional L : X → R such that

lim
X3h→0

|F (x0 + h)− F (x0)− L(h)|
‖h‖X

= 0 .

The continuous linear functional L is called the Fréchet-derivative Dx0F in x0
of F .

From the definitions it is clear, that if a functional is Fréchet-differentiable in x0 is is
also Gâteaux-differentiable in x0 and

Dx0F (h) = Ĝx0F (h) = δF (x0;h) .

The condition to be Fréchet-differentiable can be reinterpreted as linearization of the
functional. The existence of the limit is equivalent to

F (x0 + h)− F (x0)−Dx0F (h) = r(h) with lim
X3h→0

r(h)
‖h‖X

= 0 .

In introductory texts about analytical mechanics the concept of functional derivative
is introduced as follows: If the change of the functional F (x0 + h) − F (x0) can be
written as sum of a part L(x0, h) that is linear in h and a part R(x0, h) that decreases
faster than ‖h‖X , i.e.

F (x0 + h)− F (x0) = L(x0, h) +R(x0, h) = Dx0F (h) + r(h) ,

the functional L is called functional derivative of F in x0. With the knowledge about
Fréchet-derivatives, one can clearly see, that theses texts introduce the Fréchet-derivative,
which can be defined in even more general cases. The Fréchet-derivative of an operator
F : X → Y can be defined as before, using ‖ · ‖Y instead of | · |.

Theorem G.1.4 (Properties of the Fréchet-derivative).
i) The continuous linear operator L defining the Fréchet-derivative is unique.

ii) If F and G are Fréchet-differentiable in x0, so are F + G and λF for all
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λ ∈ R, and it holds, that

Dx0(F +G) = Dx0F +Dx0G and Dx0(λF ) = λDx0F .

iii) If F and G are Fréchet-differentiable in x0, then F ·G is Fréchet-differentiable
and the Fréchet-derivative satisfies the product rule:

Dx0(F ·G) = G(x0)Dx0F + F (x0)Dx0G .

iv) Let X, Y, Z be normed spaces, and F : D(F ) ⊂ X → Y , as well as
G : D(G) ⊂ Y → Z be Fréchet-differentiable operators with F (D(F )) ⊂
D(G). Then G ◦ F is Fréchet-differentiable and the chain-rule applies:

Dx0(G ◦ F ) = DF (x0)G ◦Dx0F .

The first property allows to speak about ”the” Fréchet-derivative. Also it allows to
prove the remaining properties in the same way one does in the finite-dimensional case,
by using the uniqueness of the linearization. If Fréchet-differentiability is given, the
same rules apply to the Gâteaux-derivative and hence also for the first variation. Yet
the opposite direction is not true.

By the similarities we have encountered so far, it is hardly a surprise that a vanishing
Fréchet-derivative and thus vanishing variations for all h, is a necessary condition for
extrema. Sufficient conditions, unlike in the finite-dimensional case, are however more
complicated. In most cases, at least for physical theories, it is not important if a solution
is minimizing or maximizing. Otherwise, usually there is an easy way to determine
what kind of extremum it is, by physical reasoning.

G.2. Variation of Lagrange densities

In most physical applications the functionals of interest can be written as integration
over a Lagrange density. A Lagrange-density L is an object, that maps functions to
functions and thus defining itself a function of functions (and its variables):

L(f(x), g(x), . . . , x) = `(x) ,

where ` : U ⊂ Rn → R is a proper function. Furthermore, the functionals S(φ) of
interest often have Lagrange densities that do only depend on the components of the
fields φa...bc...d and their partial derivatives φa...bc...d,µ:

S(φ) =
∫
U
L(φa...bc...d(x), φa...bc...d,µ(x), x) dnx.

Here U has to be a compact subset of Rn. In the case of invariant theories on Riemannian
manifolds one can also use covariant derivative instead of partial derivatives. We shorten
the notation of tensor components in the following, using φIJ ≡ φa...bc...d.
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Theorem G.2.1.
Let S(φ) =

∫
U L(φIJ , φIJ,µ, x) dnx be a Fréchet-differentiable functional with two

times continuously differentiable Lagrangian. Then the first variation over fields,
vanishing at the boundary ∂U , can be written as follows:

δS(φ;ψ) =
∫
U

∂L(φIJ , φIJ,µ, x)
∂φIJ

−
n∑
µ=1

∂

∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ dnx .

Proof G.2.2.
Assuming Fréchet-differentiability we know that the Gâteaux-derivative exists and
can simply calculate the first variation for the proof:

S(φ+ tψ)− S(φ) =
∫
U
L(φIJ + tψIJ , φ

I
J,µ + tψIJ,µ, x)− L(φIJ , φIJ,µ, x) dnx .

The difference of the Lagrange-densities can be Taylor-expanded for small t, which
is given, when we take the limit.

L(φIJ + tψIJ , φ
I
J,µ + tψIJ,µ, x) = L(φIJ , φIJ,µ, x)

+ t
d

dt

∣∣∣∣∣
t=0
L(φIJ + tψIJ , φ

I
J,µ + tψIJ,µ, x)

+O(t2) .

Thus the integrand becomes:

L(φIJ + tψIJ , φ
I
J,µ + tψIJ,µ, x)− L(φIJ , φIJ,µ, x) = t

d

dt

∣∣∣∣∣
t=0
L(φIJ + tψIJ , φ

I
J,µ + tψIJ,µ, x)

+O(t2) .

Evaluating the parameter derivative, using the parameter chain rule1, we find

d

dt

∣∣∣∣∣
t=0
L(φIJ + tψIJ , φ

I
J,µ + tψIJ,µ, x) =

∂L(φIJ , φIJ,µ, x)
∂φIJ

ψIJ +
n∑
µ=1

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ,µ .

Also we observe that

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ,µ = ∂

∂µ

(
∂L(φIJ , φIJ,µ, x)

∂φIJ,µ
ψIJ

)
−
(
∂

∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

)
ψIJ .

Inserting our findings in the expression for S(φ+ tψ)− S(φ) we get:

S(φ+ tψ)− S(φ) = t
∫
U

∂L(φIJ , φIJ,µ, x)
∂φIJ

−
n∑
µ=1

∂

∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ dnx
+ t

∫
U

∂

∂µ

(
∂L(φIJ , φIJ,µ, x)

∂φIJ,µ
ψIJ

)
dnx+O(t2) .



G.2. Variation of Lagrange densities 195

The integral in the second line can be rewritten using Stokes theorem (better
known as Gauss-theorem or divergence theorem here). By assumption ψIJ = 0 on
∂U we find:

∫
U

∂

∂µ

(
∂L(φIJ , φIJ,µ, x)

∂φIJ,µ
ψIJ

)
dnx =

∫
∂U

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ dΩ = 0 .

Finally with δS(φ;ψ) = lim
t→0

1
t
S(φ+ tψ)− S(φ) we get an expression for the first

variation:

δS(φ;ψ) =
∫
U

∂L(φIJ , φIJ,µ, x)
∂φIJ

−
n∑
µ=1

∂

∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

ψIJ dnx .

It is common practice to imply the sum over µ by using ∂µ instead of ∂
∂µ

in the sense of
Ricci-calculus.

Lemma G.2.3 (Euler-Lagrange-equations).
A smooth field φ extremizes the functional S(φ) =

∫
U L(φIJ , φIJ,µ, x) dnx with the

boundary condition φIJ |∂U ≡ 0 if it satisfies the Euler-Lagrange-equations :

∂L(φIJ , φIJ,µ, x)
∂φIJ

− ∂µ
∂L(φIJ , φIJ,µ, x)

∂φIJ,µ
= 0 .

Proof G.2.4.
All we need to do, is to show that δS(φ;ψ) = 0, is equivalent to the Euler-Lagrange-
equations. From the last theorem we know that

δS(φ;ψ) =
∫
U

(
∂L(φIJ , φIJ,µ, x)

∂φIJ
− ∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

)
ψIJ d

nx .

If the Euler-Lagrange-equations are satisfied, we are integrating over the zero
function, such that δS(φ;ψ) = 0. The opposite direction is harder to show. Yet,
there is an important theorem, called Fundamental lemma of calculus of
variations, which states that an integrable function f : Ω ⊂ Rn → R is identically
zero, if ∫

Ω
f(x)g(x) dnx = 0

for all g ∈ C∞ with compact support. Since we assumed U to be compact ψIJ has
a compact support.

1 d

dt
f(x1(t), . . . , xm(t)) =

m∑
i=1

∂f(x1(t), . . . , xm(t))
∂xi

d

dt
xi(t).
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G.3. Physical conventions and notations

In the physical literature there are different notations and conventions for variational
calculus. For example, arguments of functionals get square brackets S[φ]. Most notably
however, is the notation and concept of the functional derivative. As we have seen, the
functional derivative (Fréchet-derivative) of a functional S defined by an integration
over a Lagrange-density, can be written as integral operator

DφIJ
S =

∫
U
dnx

(
∂L(φIJ , φIJ,µ, x)

∂φIJ
− ∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

)
.

The domain of the functional is the set of smooth tensor fields on a compact subset of
Rn. Also the Lagrange-density had to satisfy differentiability and dependence conditions.
We notice, that the integral-operator defines a distribution over a function, commonly
denoted by δS

δφIJ
:

δS

δφIJ
=
∂L(φIJ , φIJ,µ, x)

∂φIJ
− ∂µ

∂L(φIJ , φIJ,µ, x)
∂φIJ,µ

.

The term δS
δφIJ

is also called functional derivative. This is possible, as a function
defines a regular distribution by integration. However, we had to restrict the domain of
the functional, that can be defined on a larger set. However, if one does so, the term
δS
δφIJ

defines no longer the Fréchet-derivative. We have seen so in the proof, where we
could ignore boundary terms, which enter in a general setting. The physical jargon of
this is: the field variations vanish at the boundary.
However, even with relaxed conditions, δS

δφIJ
is called functional derivative in the

physical literature. The reasoning behind this is, that although it does no longer define
the Fréchet-derivative, it still defines the variation with respect to fields ψ, that have
vanishing variations on the boundary:

δS(φ, ψ) =
∫
U

δS

δφIJ
ψIJ d

nx .

The field φ is not necessary an extrmum anymore, since only variations in special
directions vanish.

Also, the condition of U to be compact can be relaxed, as long as the variation fields
ψ have a compact support.

Remark G.3.1.
More carefully one should be with concepts involving the delta function. An
example for this would be the definition of functional derivatives:

δS

δφIJ(y) = lim
t→0

1
t
(S[φ+ tδ(x− y)]− S[φ]) .

As a means of notation, this works for Lagrange-densities. However, the delta-
distribution is not regular. Hence, the above definition for functional derivative
fails for more general functionals.
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